81 resultados para Histology of intestine


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of an isogenic set of mutants of Salmonella enterica serovar Typhimurium L354 (SL1344) with defined deletions in genes encoding components of tripartite efflux pumps, including acrB, acrD, acrF and tolC, to colonize chickens was determined in competition with L354. In addition, the ability of L354 and each mutant to adhere to, and invade, human embryonic intestine cells and mouse monocyte macrophages was determined in vitro. The tolC and acrB knockout mutants were hyper-susceptible to a range of antibiotics, dyes and detergents; the tolC mutant was also more susceptible to acid pH and bile and grew more slowly than L354. Complementation of either gene ablated the phenotype. The tolC mutant poorly adhered to both cell types in vitro and was unable to invade macrophages. The acrB mutant adhered, but did not invade macrophages. In vivo, both the acrB mutant and the tolC mutant colonized poorly and did not persist in the avian gut, whereas the acrD and acrF mutant colonized and persisted as well as L354. These data indicate that the AcrAB-TolC system is important for the colonization of chickens by S. Typhimurium and that this system has a role in mediating adherence and uptake into target host cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of Escherichia coli O157:H7 to colonize the intestinal epithelia is dependent on the expression of intimin and other adhesins. The chromosome of E. coli O157:H7 carries two loci encoding long polar fimbriae (LPF). These fimbriae mediate adherence to epithelial cells and are associated with colonization of the intestine. In order to increase our knowledge about the conditions controlling their expression and their role in colonization of an animal model, the environmental cues that promote expression of lpf genes and the role of E. coli O157:H7 LPF in intestinal colonization of lambs were investigated. We found that expression of lpf1 was regulated in response to growth phase, osmolarity, and pH; that lpf2 transcription was stimulated during late exponential growth and iron depletion; and that LPF impacts the ability of E. coli O157:H7 to persist in the intestine of infected 6-week-old lambs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oral administration of probiotic bacteria has shown potential in clinical trials for the alleviation of specific disorders of the gastrointestinal tract. However, cells must be alive in order to exert these benefits. The low pH of the stomach can greatly reduce the number of viable microorganisms that reach the intestine, thereby reducing the efficacy of the administration. Herein, a model probiotic, Bifidobacterium breve, has been encapsulated into an alginate matrix before coating in multilayers of alternating alginate and chitosan. The intention of this formulation was to improve the survival of B. breve during exposure to low pH and to target the delivery of the cells to the intestine. The material properties were first characterized before in vitro testing. Biacore™ experiments allowed for the polymer interactions to be confirmed; additionally, the stability of these multilayers to buffers simulating the pH of the gastrointestinal tract was demonstrated. Texture analysis was used to monitor changes in the gel strength during preparation, showing a weakening of the matrices during coating as a result of calcium ion sequestration. The build-up of multilayers was confirmed by confocal laser-scanning microscopy, which also showed the increase in the thickness of coat over time. During exposure to in vitro gastric conditions, an increase in viability from <3 log(CFU) per mL, seen in free cells, up to a maximum of 8.84 ± 0.17 log(CFU) per mL was noted in a 3-layer coated matrix. Multilayer-coated alginate matrices also showed a targeting of delivery to the intestine, with a gradual release of their loads over 240 min.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fruit and vegetable consumption is associated at the population level with a protective effect against colorectal cancer. Phenolic compounds, especially abundant in berries, are of interest due to their putative anticancer activity. After consumption, however, phenolic compounds are subject to digestive conditions within the gastrointestinal tract that alter their structures and potentially their function. However, the majority of phenolic compounds are not efficiently absorbed in the small intestine and a substantial portion pass into the colon. We characterized berry extracts (raspberries, strawberries, blackcurrants) produced by in vitro-simulated upper intestinal tract digestion and subsequent fecal fermentation. These extracts and selected individual colonic metabolites were then evaluated for their putative anticancer activities using in vitro models of colorectal cancer, representing the key stages of initiation, promotion and invasion. Over a physiologically-relevant dose range (0-50 µg/ml gallic acid equivalents), the digested and fermented extracts demonstrated significant anti-genotoxic, anti-mutagenic and anti-invasive activity on colonocytes. This work indicates that phenolic compounds from berries undergo considerable structural modifications during their passage through the gastrointestinal tract but their breakdown products and metabolites retain biological activity and can modulate cellular processes associated with colon cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuropeptide signalling at the plasma membrane is terminated by neuropeptide degradation by cell-surface peptidases, and by beta-arrestin-dependent receptor desensitization and endocytosis. However, receptors continue to signal from endosomes by beta-arrestin-dependent processes, and endosomal sorting mediates recycling and resensitization of plasma membrane signalling. The mechanisms that control signalling and trafficking of receptors in endosomes are poorly defined. We report a major role for endothelin-converting enzyme-1 (ECE-1) in controlling substance P (SP) and the neurokinin 1 receptor (NK(1)R) in endosomes of myenteric neurones. ECE-1 mRNA and protein were expressed by myenteric neurones of rat and mouse intestine. SP (10 nM, 10 min) induced interaction of NK(1)R and beta-arrestin at the plasma membrane, and the SP-NK(1)R-beta-arrestin signalosome complex trafficked by a dynamin-mediated mechanism to ECE-1-containing early endosomes, where ECE-1 can degrade SP. After 120 min, NK(1)R recycled from endosomes to the plasma membrane. ECE-1 inhibitors (SM-19712, PD-069185) and the vacuolar H(+)ATPase inhibitor bafilomycin A(1), which prevent endosomal SP degradation, suppressed NK(1)R recycling by >50%. Preincubation of neurones with SP (10 nM, 5 min) desensitized Ca(2+) transients to a second SP challenge after 10 min, and SP signals resensitized after 60 min. SM-19712 inhibited NK(1)R resensitization by >90%. ECE-1 inhibitors also caused sustained SP-induced activation of extracellular signal-regulated kinases, consistent with stabilization of the SP-NK(1)R-beta-arrestin signalosome. By degrading SP and destabilizing endosomal signalosomes, ECE-1 has a dual role in controlling endocytic signalling and trafficking of the NK(1)R: promoting resensitization of G protein-mediated plasma membrane signalling, and terminating beta-arrestin-mediated endosomal signalling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Bile acids (BAs) regulate cells by activating nuclear and membrane-bound receptors. G protein coupled bile acid receptor 1 (GpBAR1) is a membrane-bound G-protein-coupled receptor that can mediate the rapid, transcription-independent actions of BAs. Although BAs have well-known actions on motility and secretion, nothing is known about the localization and function of GpBAR1 in the gastrointestinal tract. METHODS: We generated an antibody to the C-terminus of human GpBAR1, and characterized the antibody by immunofluorescence and Western blotting of HEK293-GpBAR1-GFP cells. We localized GpBAR1 immunoreactivity (IR) and mRNA in the mouse intestine, and determined the mechanism by which BAs activate GpBAR1 to regulate intestinal motility. KEY RESULTS: The GpBAR1 antibody specifically detected GpBAR1-GFP at the plasma membrane of HEK293 cells, and interacted with proteins corresponding in mass to the GpBAR1-GFP fusion protein. GpBAR1-IR and mRNA were detected in enteric ganglia of the mouse stomach and small and large intestine, and in the muscularis externa and mucosa of the small intestine. Within the myenteric plexus of the intestine, GpBAR1-IR was localized to approximately 50% of all neurons and to >80% of inhibitory motor neurons and descending interneurons expressing nitric oxide synthase. Deoxycholic acid, a GpBAR1 agonist, caused a rapid and sustained inhibition of spontaneous phasic activity of isolated segments of ileum and colon by a neurogenic, cholinergic and nitrergic mechanism, and delayed gastrointestinal transit. CONCLUSIONS & INFERENCES: G protein coupled bile acid receptor 1 is unexpectedly expressed in enteric neurons. Bile acids activate GpBAR1 on inhibitory motor neurons to release nitric oxide and suppress motility, revealing a novel mechanism for the actions of BAs on intestinal motility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Certain serine proteases signal to cells by cleaving protease-activated receptors (PARs) and thereby regulate hemostasis, inflammation, pain and healing. However, in many tissues the proteases that activate PARs are unknown. Although pancreatic trypsin may be a physiological agonist of PAR(2) and PAR(4) in the small intestine and pancreas, these receptors are expressed by cells not normally exposed pancreatic trypsin. We investigated whether extrapancreatic forms of trypsin are PAR agonists. Epithelial cells lines from prostate, colon, and airway and human colonic mucosa expressed mRNA encoding PAR(2), trypsinogen IV, and enteropeptidase, which activates the zymogen. Immunoreactive trypsinogen IV was detected in vesicles in these cells. Trypsinogen IV was cloned from PC-3 cells and expressed in CHO cells, where it was also localized to cytoplasmic vesicles. We expressed trypsinogen IV with an N-terminal Igkappa signal peptide to direct constitutive secretion and allow enzymatic characterization. Treatment of conditioned medium with enteropeptidase reduced the apparent molecular mass of trypsinogen IV from 36 to 30 kDa and generated enzymatic activity, consistent with formation of trypsin IV. In contrast to pancreatic trypsin, trypsin IV was completely resistant to inhibition by polypeptide inhibitors. Exposure of cell lines expressing PAR(2) and PAR(4) to trypsin IV increased [Ca(2+)](i) and strongly desensitized cells to PAR agonists, whereas there were no responses in cells lacking these receptors. Thus, trypsin IV is a potential agonist of PAR(2) and PAR(4) in epithelial tissues where its resistance to endogenous trypsin inhibitors may permit prolonged signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An in vitro colon extended physiologically based extraction test (CEPBET) which incorporates human gastrointestinal tract (GIT) parameters (including pH and chemistry, solid-to-fluid ratio, mixing and emptying rates) was applied for the first time to study the bioaccessibility of brominated flame retardants (BFRs) from the 3 main GIT compartments (stomach, small intestine and colon) following ingestion of indoor dust. Results revealed the bioaccessibility of γ-HBCD (72%) was less than that for α- and β-isomers (92% and 80% respectively) which may be attributed to the lower aqueous solubility of the γ-isomer (2 μg L−1) compared to the α- and β-isomers (45 and 15 μg L−1 respectively). No significant change in the enantiomeric fractions of HBCDs was observed in any of the studied samples. However, this does not completely exclude the possibility of in vivo enantioselective absorption of HBCDs, as the GIT cell lining and bacterial flora – which may act enantioselectively – are not included in the current CE-PBET model. While TBBP-A was almost completely (94%) bioaccessible, BDE-209 was the least (14%) bioaccessible of the studied BFRs. Bioaccessibility of tri-hepta BDEs ranged from 32–58%. No decrease in the bioaccessibility with increasing level of bromination was observed in the studied PBDEs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The beneficial effects of cocoa on vascular function are mediated by the absorption of monomeric flavanols into the circulation from the small intestine. As such, an understanding of the impact of the food matrix on the delivery of flavanols to the circulation is critical in assessing the potential vascular impact of a food. In the present study, we investigated the impact of carbohydrate type on flavanol absorption and metabolism from chocolate. A randomised, double-blind, three-arm cross-over study was conducted, where fifteen volunteers were randomly assigned to either a high-flavanol (266 mg) chocolate containing maltitol, a high-flavanol (251 mg) chocolate with sucrose or a low-flavanol (48 mg) chocolate with sucrose. Test chocolates were matched for micro- and macronutrients, including the alkaloids theobromine and caffeine, and were similar in taste and appearance. Total flavanol absorption was lower after consumption of the maltitol-containing test chocolate compared with following consumption of its sucrose-containing equivalent (P = 0·002). Although the O-methylation pattern observed for absorbed flavanols was unaffected by sugar type, individual levels of unmethylated ( - )-epicatechin metabolites, 3'-O-methyl-epicatechin and 4'-O-methyl-epicatechin metabolites were lower for the maltitol-containing test chocolate compared with the sucrose-containing equivalent. Despite a reduction in the total plasma pool of flavanols, the maximum time (T max) was unaffected. The present data indicate that full assessment of intervention treatments is vital in future intervention trials with flavanols and that carbohydrate content is an important determinant for the optimal delivery of flavanols to the circulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioaccessibility tests can be used to improve contaminated land risk assessments. For organic pollutants a ‘sink’ is required within these tests to better mimic their desorption under the physiological conditions prevailing in the intestinal tract, where a steep diffusion gradient for the removal of organic pollutants from the soil matrix would exist. This is currently ignored in most PBET systems. By combining the CEPBET bioaccessibility test with an infinite sink, the removal of PAH from spiked solutions was monitored. Less than 10% of spiked PAH remained in the stomach media after 1 h, 10% by 4 h in the small intestine compartment and c.15% after 16 h in the colon. The addition of the infinite sink increased bioaccessibility estimates for field soils by a factor of 1.2–2.8, confirming its importance for robust PBET tests. TOC or BC were not the only factors controlling desorption of the PAH from the soils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human large intestine is a highly complex ecosystem that contains somewhere in the region of 400 different species of bacterial1.The vast majority of these bacteria are strict anaerobes and grow on a wide variety of substrates that have either escaped digestion in the small bowel or have been produced by the host2. In Western populations, between 10–60g of carbohydrate and 6–18g of proteinaceous material are potentially available for fermentation each day, producing a total bacterial mass of approximately 90g3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enteric coated oral tablets or capsules can deliver dried live cells directly into the intestine. Previously, we found that a live attenuated bacterial vaccine acquired sensitivity to intestinal bile when dried, raising the possibility that although gastric acid can be bypassed, significant loss of viability might occur on release from an enteric coated oral formulations. Here we demonstrate that some food-grade lyophilised preparations of Lactobacillus casei and Lactobacillus salivarius also show temporary bile sensitivity that can be rapidly reversed by rehydration. To protect dried bacterial cells from temporary bile sensitivity, we propose using bile acid adsorbing resins, such as cholestyramine, which are bile acid binding agents, historically used to lower cholesterol levels. Vcaps™ HPMC capsules alone provided up to 830-fold protection from bile. The inclusion of 50% w/w cholestyramine in Vcaps™ HPMC capsules resulted in release of up to 1700-fold more live Lactobacillus casei into simulated intestinal fluid containing 1% bile, when compared to dried cells added directly to bile. We conclude that delivery of dried live probiotic organisms to the intestine may be improved by providing protection from bile by addition of bile adsorbing resins and the use of HPMC capsules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Dermatosparaxis (Ehlers–Danlos syndrome in humans) is characterized by extreme fragility of the skin. It is due to the lack of mature collagen caused by a failure in the enzymatic processing of procollagen I. We investigated the condition in a commercial sheep flock. Hypothesis/Objectives Mutations in the ADAM metallopeptidase with thrombospondin type 1 motif, 2 (ADAMTS2) locus, are involved in the development of dermatosparaxis in humans, cattle and the dorper sheep breed; consequently, this locus was investigated in the flock. Animals A single affected lamb, its dam, the dam of a second affected lamb and the rams in the flock were studied. Methods DNA was purified from blood, PCR primers were used to detect parts of the ADAMS2 gene and nucleotide sequencing was performed using Sanger's procedure. Skin samples were examined using standard histology procedures. Results A missense mutation was identified in the catalytic domain of ADAMTS2. The mutation is predicted to cause the substitution in the mature ADAMTS2 of a valine molecule by a methionine molecule (V15M) affecting the catalytic domain of the enzyme. Both the ‘sorting intolerant from tolerant’ (SIFT) and the PolyPhen-2 methodologies predicted a damaging effect for the mutation. Three-dimensional modelling suggested that this mutation may alter the stability of the protein folding or distort the structure, causing the protein to malfunction. Conclusions and clinical importance Detection of the mutation responsible for the pathology allowed us to remove the heterozygote ram, thus preventing additional cases in the flock.