78 resultados para Gresham Semi-centennial Committee (Gresham, Wis.)
Resumo:
Background Patients do not adhere to their medicines for a host of reasons which can include their underlying beliefs as well as the quality of their interactions with healthcare professionals. One way of measuring the outcome of pharmacy adherence services is to assess patient satisfaction but no questionnaire exists that truly captures patients' experiences with these relatively new services. Objective Our objective was to develop a conceptual framework specific to patient satisfaction with a community pharmacy adherence service based on criteria used by patients themselves. Setting The study was based in community pharmacies in one large geographical area of the UK (Surrey). All the work was conducted between October 2008 and September 2010. Methods This study involved qualitative non-participant observation and semi-structured interviewing. We observed the recruitment of patients to the Medicines Use Review (MUR) service and also actual MUR consultations (7). We also interviewed patients (15). Data collection continued until no new themes were identified during analysis. We analysed interviews to firstly create a comprehensive account of themes which had significance within the transcripts, then created sub-themes within super-ordinate categories. We used a structure-process-outcome approach to develop a conceptual framework relating to patient satisfaction with the MUR. Favourable ethical opinion for this study was received from the NHS Surrey Research Ethics Committee on 2nd June 2008. Results Five super-ordinate themes linked to patient satisfaction with the MUR service were identified, including relationships with healthcare providers; attitudes towards healthcare providers; patients' experience of health, healthcare and medicines; patients' views of the MUR service; the logistics of the MUR service. In the conceptual framework, structure was conceptualised as existing relationships, environment, and time; process was conceptualised as related to recruitment and consultation stages; and outcome as two concepts of immediate patient outcomes and satisfaction on reflection. Conclusion We identified and highlighted factors that can influence patient satisfaction with the MUR service and this led to the development of a conceptual framework of patient satisfaction with the MUR service. This can form the basis for developing a questionnaire for measuring patient satisfaction with this and similar pharmacy adherence services. Impact of findings on practice * Pharmacists and researchers can access the relevant ideas presented here in relation to patient satisfaction with pharmacy adherence services. * Researcher can use the conceptual framework as a basis for measuring the quality of pharmacy adherence services. * Community pharmacists can improve the quality of healthcare they provide by realizing concepts relevant to patient satisfaction with adherence services.
Resumo:
This study of landscape evolution presents both new modern and palaeo process-landform data, and analyses the behaviour of the Antarctic Peninsula Ice Sheet through the Last Glacial Maximum (LGM), the Holocene and to the present day. Six sediment-landform assemblages are described and interpreted for Ulu Peninsula, James Ross Island, NE Antarctic Peninsula: (1) the Glacier Ice and Snow Assemblage; (2) the Glacigenic Assemblage, which relates to LGM sediments and comprises both erratic-poor and erratic-rich drift, deposited by cold-based and wet-based ice and ice streams respectively; (3) the Boulder Train Assemblage, deposited during a Mid-Holocene glacier readvance; (4) the Ice-cored Moraine Assemblage, found in front of small cirque glaciers; (5) the Paraglacial Assemblage including scree, pebble-boulder lags, and littoral and fluvial processes; and (6) the Periglacial Assemblage including rock glaciers, protalus ramparts, blockfields, solifluction lobes and extensive patterned ground. The interplay between glacial, paraglacial and periglacial processes in this semi-arid polar environment is important in understanding polygenetic landforms. Crucially, cold-based ice was capable of sediment and landform genesis and modification. This landsystem model can aid the interpretation of past environments, but also provides new data to aid the reconstruction of the last ice sheet to overrun James Ross Island.
Resumo:
The time discretization in weather and climate models introduces truncation errors that limit the accuracy of the simulations. Recent work has yielded a method for reducing the amplitude errors in leapfrog integrations from first-order to fifth-order. This improvement is achieved by replacing the Robert--Asselin filter with the RAW filter and using a linear combination of the unfiltered and filtered states to compute the tendency term. The purpose of the present paper is to apply the composite-tendency RAW-filtered leapfrog scheme to semi-implicit integrations. A theoretical analysis shows that the stability and accuracy are unaffected by the introduction of the implicitly treated mode. The scheme is tested in semi-implicit numerical integrations in both a simple nonlinear stiff system and a medium-complexity atmospheric general circulation model, and yields substantial improvements in both cases. We conclude that the composite-tendency RAW-filtered leapfrog scheme is suitable for use in semi-implicit integrations.
Resumo:
We analyse the widely-used international/ Zürich sunspot number record, R, with a view to quantifying a suspected calibration discontinuity around 1945 (which has been termed the “Waldmeier discontinuity” [Svalgaard, 2011]). We compare R against the composite sunspot group data from the Royal Greenwich Observatory (RGO) network and the Solar Optical Observing Network (SOON), using both the number of sunspot groups, N{sub}G{\sub}, and the total area of the sunspots, A{sub}G{\sub}. In addition, we compare R with the recently developed interdiurnal variability geomagnetic indices IDV and IDV(1d). In all four cases, linearity of the relationship with R is not assumed and care is taken to ensure that the relationship of each with R is the same before and after the putative calibration change. It is shown the probability that a correction is not needed is of order 10{sup}−8{\sup} and that R is indeed too low before 1945. The optimum correction to R for values before 1945 is found to be 11.6%, 11.7%, 10.3% and 7.9% using A{sub}G{\sub}, N{sub)G{\sub}, IDV, and IDV(1d), respectively. The optimum value obtained by combining the sunspot group data is 11.6% with an uncertainty range 8.1-14.8% at the 2σ level. The geomagnetic indices provide an independent yet less stringent test but do give values that fall within the 2σ uncertainty band with optimum values are slightly lower than from the sunspot group data. The probability of the correction needed being as large as 20%, as advocated by Svalgaard [2011], is shown to be 1.6 × 10{sup}−5{\sup}.
Resumo:
We investigate the relationship between interdiurnal variation geomagnetic activity indices, IDV and IDV(1d), corrected sunspot number, R{sub}C{\sub}, and the group sunspot number R{sub}G{\sub}. R{sub}C{\sub} uses corrections for both the “Waldmeier discontinuity”, as derived in Paper 1 [Lockwood et al., 2014c], and the “Wolf discontinuity” revealed by Leussu et al. [2013]. We show that the simple correlation of the geomagnetic indices with R{sub}C{\sub}{sup}n{\sup} or R{sub}G{\sub}{sup}n{\sup} masks a considerable solar cycle variation. Using IDV(1d) or IDV to predict or evaluate the sunspot numbers, the errors are almost halved by allowing for the fact that the relationship varies over the solar cycle. The results indicate that differences between R{sub}C{\sub} and R{sub}G{\sub} have a variety of causes and are highly unlikely to be attributable to errors in either R{sub}G{\sub} alone, as has recently been assumed. Because it is not known if R{sub}C{\sub} or R{sub}G{\sub} is a better predictor of open flux emergence before 1874, a simple sunspot number composite is suggested which, like R{sub}G{\sub}, enables modelling of the open solar flux for 1610 onwards in Paper 3, but maintains the characteristics of R{sub}C{\sub}.
Resumo:
From the variation of near-Earth interplanetary conditions, reconstructed for the mid-19th century to the present day using historic geomagnetic activity observations, Lockwood and Owens [2014] have suggested that Earth remains within a broadened streamer belt during solar cycles when the Open Solar Flux (OSF) is low. From this they propose that the Earth was immersed in almost constant slow solar wind during the Maunder minimum (c. 1650-1710). In this paper, we extend continuity modelling of the OSF to predict the streamer belt width using both group sunspot numbers and corrected international sunspot numbers to quantify the emergence rate of new OSF. The results support the idea that the solar wind at Earth was persistently slow during the Maunder minimum because the streamer belt was broad.
Resumo:
Purpose The sensitivity of soil organic carbon to global change drivers, according to the depth profile, is receiving increasing attention because of its importance in the global carbon cycle and its potential feedback to climate change. A better knowledge of the vertical distribution of SOC and its controlling factors—the aim of this study—will help scientists predict the consequences of global change. Materials and methods The study area was the Murcia Province (S.E. Spain) under semiarid Mediterranean conditions. The database used consists of 312 soil profiles collected in a systematic grid, each 12 km2 covering a total area of 11,004 km2. Statistical analysis to study the relationships between SOC concentration and control factors in different soil use scenarios was conducted at fixed depths of 0–20, 20–40, 40–60, and 60–100 cm. Results and discussion SOC concentration in the top 40 cm ranged between 6.1 and 31.5 g kg−1, with significant differences according to land use, soil type and lithology, while below this depth, no differences were observed (SOC concentration 2.1–6.8 g kg−1). The ANOVA showed that land use was the most important factor controlling SOC concentration in the 0–40 cm depth. Significant differences were found in the relative importance of environmental and textural factors according to land use and soil depth. In forestland, mean annual precipitation and texture were the main predictors of SOC, while in cropland and shrubland, the main predictors were mean annual temperature and lithology. Total SOC stored in the top 1 m in the region was about 79 Tg with a low mean density of 7.18 kg Cm−3. The vertical distribution of SOC was shallower in forestland and deeper in cropland. A reduction in rainfall would lead to SOC decrease in forestland and shrubland, and an increase of mean annual temperature would adversely affect SOC in croplands and shrubland. With increasing depth, the relative importance of climatic factors decreases and texture becomes more important in controlling SOC in all land uses. Conclusions Due to climate change, impacts will be much greater in surface SOC, the strategies for C sequestration should be focused on subsoil sequestration, which was hindered in forestland due to bedrock limitations to soil depth. In these conditions, sequestration in cropland through appropriate management practices is recommended.
Resumo:
We consider a generic basic semi-algebraic subset S of the space of generalized functions, that is a set given by (not necessarily countably many) polynomial constraints. We derive necessary and sufficient conditions for an infinite sequence of generalized functions to be realizable on S, namely to be the moment sequence of a finite measure concentrated on S. Our approach combines the classical results about the moment problem on nuclear spaces with the techniques recently developed to treat the moment problem on basic semi-algebraic sets of Rd. In this way, we determine realizability conditions that can be more easily verified than the well-known Haviland type conditions. Our result completely characterizes the support of the realizing measure in terms of its moments. As concrete examples of semi-algebraic sets of generalized functions, we consider the set of all Radon measures and the set of all the measures having bounded Radon–Nikodym density w.r.t. the Lebesgue measure.
Resumo:
There is a growing consensus that the eleven year modulation of galactic cosmic rays (GCRs) resulting from solar activity is related to interplanetary propagating diffusive barriers (PDBs). The source of these PDBs is not well understood and numerical models describing GCR modulation simulate their effect by scaling the diffusion tensor to the interplanetary magnetic field strength (IMF). The implications of a century-scale change in solar wind speed and open solar flux, for numerical modelling of GCR modulation and the reconstruction of GCR variations over the last hundred years are discussed. The dominant role of the solar non-axisymmetric magnetic field in both forcing longitudinal solar wind speed fluctuations at solar maximum and in increasing the IMF is discussed in the context of a long-term rise in the open solar magnetic flux.
Resumo:
We use combinations of geomagnetic indices, based on both variation range and hourly means, to derive the solar wind flow speed, the interplanetary magnetic field strength at 1 AU and the total open solar flux between 1895 and the present. We analyze the effects of the regression procedure and geomagnetic indices used by adopting four analysis methods. These give a mean interplanetary magnetic field strength increase of 45.1 ± 4.5% between 1903 and 1956, associated with a 14.4 ± 0.7% rise in the solar wind speed. We use averaging timescales of 1 and 2 days to allow for the difference between the magnetic fluxes threading the coronal source surface and the heliocentric sphere at 1 AU. The largest uncertainties originate from the choice of regression procedure: the average of all eight estimates of the rise in open solar flux is 73.0 ± 5.0%, but the best procedure, giving the narrowest and most symmetric distribution of fit residuals, yields 87.3 ± 3.9%.
Resumo:
Pollination services are economically important component of agricultural biodiversity which enhance the yield and quality of many crops. An understanding of the suitability of extant habitats for pollinating species is crucial for planning management actions to protect and manage these service providers. In a highly modified agricultural ecosystem, we tested the effect of different pollination treatments (open, autonomous self- and wind-pollination) on pod set, seed set, and seed weight in field beans (Vicia faba). We also investigated the effect of semi-natural habitats and flower abundance on pollinators of field beans. Pollinator sampling was undertaken in ten field bean fields along a gradient of habitat complexity; CORINE land cover classification was used to analyse the land use patterns between 500–3000 m around the sites. Total yield from open-pollination increased by 185% compared to autonomous self-pollination. There was positive interactive effect of local flower abundance and cover of semi-natural habitats on overall abundance of pollinators at 1500 and 2000 m, and abundance of bumblebees (Bombus spp.) at 1000–2000 m. In contrast, species richness of pollinators was only correlated with flower abundance and not with semi-natural habitats. We did not find a link between pod set from open-pollination and pollinator abundance, possibly due to variations in the growing conditions and pollinator communities between sites. We conclude that insect pollination is essential for optimal bean yields and therefore the maintenance of semi-natural habitats in agriculture-dominated landscapes should ensure stable and more efficient pollination services in field beans.
Resumo:
We used a light-use efficiency model of photosynthesis coupled with a dynamic carbon allocation and tree-growth model to simulate annual growth of the gymnosperm Callitris columellaris in the semi-arid Great Western Woodlands, Western Australia, over the past 100 years. Parameter values were derived from independent observations except for sapwood specific respiration rate, fine-root turnover time, fine-root specific respiration rate and the ratio of fine-root mass to foliage area, which were estimated by Bayesian optimization. The model reproduced the general pattern of interannual variability in radial growth (tree-ring width), including the response to the shift in precipitation regimes that occurred in the 1960s. Simulated and observed responses to climate were consistent. Both showed a significant positive response of tree-ring width to total photosynthetically active radiation received and to the ratio of modeled actual to equilibrium evapotranspiration, and a significant negative response to vapour pressure deficit. However, the simulations showed an enhancement of radial growth in response to increasing atmospheric CO2 concentration (ppm) ([CO2]) during recent decades that is not present in the observations. The discrepancy disappeared when the model was recalibrated on successive 30-year windows. Then the ratio of fine-root mass to foliage area increases by 14% (from 0.127 to 0.144 kg C m-2) as [CO2] increased while the other three estimated parameters remained constant. The absence of a signal of increasing [CO2] has been noted in many tree-ring records, despite the enhancement of photosynthetic rates and water-use efficiency resulting from increasing [CO2]. Our simulations suggest that this behaviour could be explained as a consequence of a shift towards below-ground carbon allocation.
Resumo:
Timediscretization in weatherandclimate modelsintroduces truncation errors that limit the accuracy of the simulations. Recent work has yielded a method for reducing the amplitude errors in leap-frog integrations from first-order to fifth-order.This improvement is achieved by replacing the Robert–Asselin filter with the Robert–Asselin–Williams (RAW) filter and using a linear combination of unfiltered and filtered states to compute the tendency term. The purpose of the present article is to apply the composite-tendency RAW-filtered leapfrog scheme to semi-implicit integrations. A theoretical analysis shows that the stability and accuracy are unaffected by the introduction of the implicitly treated mode. The scheme is tested in semi-implicit numerical integrations in both a simple nonlinear stiff system and a medium-complexity atmospheric general circulation model and yields substantial improvements in both cases. We conclude that the composite-tendency RAW-filtered leap-frog scheme is suitable for use in semi-implicit integrations.
Resumo:
We investigated the potential of soil moisture and nutrient amendments to enhance the biodegradation of oil in the soils from an ecologically unique semi-arid island. This was achieved using a series of controlled laboratory incubations where moisture or nutrient levels were experimentally manipulated. Respired CO2 increased sharply with moisture amendment reflecting the severe moisture limitation of these porous and semi-arid soils. The greatest levels of CO2 respiration were generally obtained with a soil pore water saturation of 50–70%. Biodegradation in these nutrient poor soils was also promoted by the moderate addition of a nitrogen fertiliser. Increased biodegradation was greater at the lowest amendment rate (100 mg N kg−1 soil) than the higher levels (500 or 1,000 mg N kg−1 soil), suggesting the higher application rates may introduce N toxicity. Addition of phosphorous alone had little effect, but a combined 500 mg N and 200 mg P kg−1 soil amendment led to a synergistic increase in CO2 respiration (3.0×), suggesting P can limit the biodegradation of hydrocarbons following exogenous N amendment.
Resumo:
Background Despite the promising benefits of adaptive designs (ADs), their routine use, especially in confirmatory trials, is lagging behind the prominence given to them in the statistical literature. Much of the previous research to understand barriers and potential facilitators to the use of ADs has been driven from a pharmaceutical drug development perspective, with little focus on trials in the public sector. In this paper, we explore key stakeholders’ experiences, perceptions and views on barriers and facilitators to the use of ADs in publicly funded confirmatory trials. Methods Semi-structured, in-depth interviews of key stakeholders in clinical trials research (CTU directors, funding board and panel members, statisticians, regulators, chief investigators, data monitoring committee members and health economists) were conducted through telephone or face-to-face sessions, predominantly in the UK. We purposively selected participants sequentially to optimise maximum variation in views and experiences. We employed the framework approach to analyse the qualitative data. Results We interviewed 27 participants. We found some of the perceived barriers to be: lack of knowledge and experience coupled with paucity of case studies, lack of applied training, degree of reluctance to use ADs, lack of bridge funding and time to support design work, lack of statistical expertise, some anxiety about the impact of early trial stopping on researchers’ employment contracts, lack of understanding of acceptable scope of ADs and when ADs are appropriate, and statistical and practical complexities. Reluctance to use ADs seemed to be influenced by: therapeutic area, unfamiliarity, concerns about their robustness in decision-making and acceptability of findings to change practice, perceived complexities and proposed type of AD, among others. Conclusions There are still considerable multifaceted, individual and organisational obstacles to be addressed to improve uptake, and successful implementation of ADs when appropriate. Nevertheless, inferred positive change in attitudes and receptiveness towards the appropriate use of ADs by public funders are supportive and are a stepping stone for the future utilisation of ADs by researchers.