98 resultados para Glycogen - Metabolism
Resumo:
Based on the potential benefits to human health there is interest in increasing 18:3n-3, 20:5n-3, 22:6n-6, and cis-9,trans-11 conjugated linoleic acid (CLA) in ruminant foods. Four Aberdeen Angus steers (406 ± 8.2 kg BW) fitted with rumen and duodenal cannulae were used in a 4 x 4 Latin square experiment with 21 d periods to examine the potential of fish oil (FO) and linseed oil (LO) in the diet to increase ruminal outflow of trans-11 18:1 and total n-3 polyunsaturated fatty acids (PUFA) in growing cattle. Treatments consisted of a control diet (60:40; forage:concentrate ratio, on a DM basis, respectively) based on maize silage, or the same basal ration containing 30 g/kg DM of FO, LO or a mixture (1:1, w/w) of FO and LO (LFO). Diets were offered as total mixed rations and fed at a rate of 85 g DM/kg BW0.75/d. Oils had no effect (P = 0.52) on DM intake. Linseed oil had no effect (P > 0.05) on ruminal pH or VFA concentrations, while FO shifted rumen fermentation towards propionate at the expense of acetate. Compared with the control, LO increased (P < 0.05) 18:0, cis 18:1 (Δ9, 12-15), trans 18:1 (Δ4-9, 11-16), trans 18:2, geometric isomers of ∆9,11, ∆11,13, and ∆13,15 CLA, trans-8,cis-10 CLA, trans-10,trans-12 CLA, trans-12,trans-14 CLA, and 18:3n-3 flow at the duodenum. Inclusion of FO in the diet resulted in higher (P < 0.05) flows of cis-9 16:1, trans 16:1 (Δ6-13), cis 18:1 (Δ9, 11, and 13), trans 18:1 (Δ6-15), trans 18:2, 20:5n-3, 22:5n-3, and 22:6n-3, and lowered (P < 0.001) 18:0 at the duodenum relative to the control. For most fatty acids at the duodenum responses to LFO were intermediate of FO and LO. However, LFO resulted in higher (P = 0.04) flows of total trans 18:1 than LO and increased (P < 0.01) trans-6 16:1 and trans-12 18:1 at the duodenum compared with FO or LO. Biohydrogenation of cis-9 18:1 and 18:2n-6 in the rumen was independent of treatment, but both FO and LO increased (P < 0.001) the extent of 18:3n-3 biohydrogenation compared with the control. Ruminal 18:3n-3 biohydrogenation was higher (P < 0.001) for LO and LFO than FO, while biohydrogenation of 20:5n-3 and 22:6n-3 in the rumen was marginally lower (P = 0.05) for LFO than FO. In conclusion, LO and FO at 30 g/kg DM altered the biohydrogenation of unsaturated fatty acids in the rumen causing an increase in the flow of specific intermediates at the duodenum, but the potential of these oils fed alone or as a mixture to increase n-3 PUFA at the duodenum in cattle appears limited.
Resumo:
Purpose Green tea is thought to possess many beneficial effects on human health. However, the extent of green tea polyphenol biotransformation may affect its proposed therapeutic effects. Catechol-O-methyltransferase (COMT), the enzyme responsible for polyphenolic methylation, has a common polymorphism in the genetic code at position 158 reported to result in a 40% reduction in enzyme activity in in vitro studies. The current preliminary study was designed to investigate the impact of COMT genotype on green tea catechin absorption and metabolism in humans. Methods Twenty participants (10 of each homozygous COMT genotype) were recruited, and plasma concentration profiles were produced for epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), epicatechin (EC) and 4′-O-methyl EGCG after 1.1 g of Sunphenon decaffeinated green tea extract (836 mg green tea catechins), with a meal given after 60 min. Results For the entire group, EGCG, EGC, EC, ECG and 4′-O-methyl EGCG reached maximum concentrations of 1.09, 0.41, 0.33, 0.16 and 0.08 μM at 81.5, 98.5, 99.0, 85.5 and 96.5 min, respectively. Bimodal curves were observed for the non-gallated green tea catechins EGC and EC as opposed to single-peaked curves for the gallated green tea catechins EGCG and ECG. No significant parametric differences between COMT genotype groups were found. Conclusions In conclusion, the COMT Val(158/108)Met does not appear to have a dramatic influence on EGCG absorption and elimination. However, further pharmacokinetic research is needed to substantiate these findings.
Resumo:
A two by two experimental study has been designed to determine the effect of gut microbiota on energy metabolism in mouse models. The metabolic phenotype of germ-free (GF, n = 20) and conventional (n = 20) mice was characterized using a NMR spectroscopy-based metabolic profiling approach, with a focus on sexual dimorphism (20 males, 20 females) and energy metabolism in urine, plasma, liver, and brown adipose tissue (BAT). Physiological data of age-matched GF and conventional mice showed that male animals had a higher weight than females in both groups. In addition, conventional males had a significantly higher total body fat content (TBFC) compared to conventional females, whereas this sexual dimorphism disappeared in GF animals (i.e., male GF mice had a TBFC similar to those of conventional and GF females). Profiling of BAT hydrophilic extracts revealed that sexual dimorphism in normal mice was absent in GF animals, which also displayed lower BAT lactate levels and higher levels of (D)-3-hydroxybutyrate in liver, plasma, and BAT, together with lower circulating levels of VLDL. These data indicate that the gut microbiota modulate the lipid metabolism in BAT, as the absence of gut microbiota stimulated both hepatic and BAT lipolysis while inhibiting lipogenesis. We also demonstrated that (1)H NMR metabolic profiles of BAT were excellent predictors of BW and TBFC, indicating the potential of BAT to fight against obesity.
Resumo:
The gut microbiota enhances the host's metabolic capacity for processing nutrients and drugs and modulate the activities of multiple pathways in a variety of organ systems. We have probed the systemic metabolic adaptation to gut colonization for 20 days following exposure of axenic mice (n = 35) to a typical environmental microbial background using high-resolution (1)H nuclear magnetic resonance (NMR) spectroscopy to analyze urine, plasma, liver, kidney, and colon (5 time points) metabolic profiles. Acquisition of the gut microbiota was associated with rapid increase in body weight (4%) over the first 5 days of colonization with parallel changes in multiple pathways in all compartments analyzed. The colonization process stimulated glycogenesis in the liver prior to triggering increases in hepatic triglyceride synthesis. These changes were associated with modifications of hepatic Cyp8b1 expression and the subsequent alteration of bile acid metabolites, including taurocholate and tauromuricholate, which are essential regulators of lipid absorption. Expression and activity of major drug-metabolizing enzymes (Cyp3a11 and Cyp2c29) were also significantly stimulated. Remarkably, statistical modeling of the interactions between hepatic metabolic profiles and microbial composition analyzed by 16S rRNA gene pyrosequencing revealed strong associations of the Coriobacteriaceae family with both the hepatic triglyceride, glucose, and glycogen levels and the metabolism of xenobiotics. These data demonstrate the importance of microbial activity in metabolic phenotype development, indicating that microbiota manipulation is a useful tool for beneficially modulating xenobiotic metabolism and pharmacokinetics in personalized health care. IMPORTANCE: Gut bacteria have been associated with various essential biological functions in humans such as energy harvest and regulation of blood pressure. Furthermore, gut microbial colonization occurs after birth in parallel with other critical processes such as immune and cognitive development. Thus, it is essential to understand the bidirectional interaction between the host metabolism and its symbionts. Here, we describe the first evidence of an in vivo association between a family of bacteria and hepatic lipid metabolism. These results provide new insights into the fundamental mechanisms that regulate host-gut microbiota interactions and are thus of wide interest to microbiological, nutrition, metabolic, systems biology, and pharmaceutical research communities. This work will also contribute to developing novel strategies in the alteration of host-gut microbiota relationships which can in turn beneficially modulate the host metabolism.
Resumo:
The time-course of metabolic events following response to a model hepatotoxin ethionine (800 mg/kg) was investigated over a 7 day period in rats using high-resolution (1)H NMR spectroscopic analysis of urine and multivariate statistics. Complementary information was obtained by multivariate analysis of (1)H MAS NMR spectra of intact liver and by conventional histopathology and clinical chemistry of blood plasma. (1)H MAS NMR spectra of liver showed toxin-induced lipidosis 24 h postdose consistent with the steatosis observed by histopathology, while hypertaurinuria was suggestive of liver injury. Early biochemical changes in urine included elevation of guanidinoacetate, suggesting impaired methylation reactions. Urinary increases in 5-oxoproline and glycine suggested disruption of the gamma-glutamyl cycle. Signs of ATP depletion together with impairment of the energy metabolism were given from the decreased levels in tricarboxylic acid cycle intermediates, the appearance of ketone bodies in urine, the depletion of hepatic glucose and glycogen, and also hypoglycemia. The observed increase in nicotinuric acid in urine could be an indication of an increase in NAD catabolism, a possible consequence of ATP depletion. Effects on the gut microbiota were suggested by the observed urinary reductions in the microbial metabolites 3-/4-hydroxyphenyl propionic acid, dimethylamine, and tryptamine. At later stages of toxicity, there was evidence of kidney damage, as indicated by the tubular damage observed by histopathology, supported by increased urinary excretion of lactic acid, amino acids, and glucose. These studies have given new insights into mechanisms of ethionine-induced toxicity and show the value of multisystem level data integration in the understanding of experimental models of toxicity or disease.
Resumo:
The secoiridoids 3,4-dihydroxyphenylethanol-elenolic acid (3,4-DHPEA-EA) and 3,4-dihydroxyphenylethanol-elenolic acid dialdehyde (3,4-DHPEA-EDA) account for approximately 55 % of the phenolic content of olive oil and may be partly responsible for its reported human health benefits. We have investigated the absorption and metabolism of these secoiridoids in the upper gastrointestinal tract. Both 3,4-DHPEA-EDA and 3,4-DHPEA-EA were relatively stable under gastric conditions, only undergoing limited hydrolysis. Both secoiridoids were transferred across a human cellular model of the small intestine (Caco-2 cells). However, no glucuronide conjugation was observed for either secoiridoid during transfer, although some hydroxytyrosol and homovanillic alcohol were formed. As Caco-2 cells are known to express only limited metabolic activity, we also investigated the absorption and metabolism of secoiridoids in isolated, perfused segments of the jejunum and ileum. Here, both secoiridoids underwent extensive metabolism, most notably a two-electron reduction and glucuronidation during the transfer across both the ileum and jejunum. Unlike Caco-2 cells, the intact small-intestinal segments contain NADPH-dependent aldo-keto reductases, which reduce the aldehyde carbonyl group of 3,4-DHPEA-EA and one of the two aldeydic carbonyl groups present on 3,4-DHPEA-EDA. These reduced forms are then glucuronidated and represent the major in vivo small-intestinal metabolites of the secoiridoids. In agreement with the cell studies, perfusion of the jejunum and ileum also yielded hydroxytyrosol and homovanillic alcohol and their respective glucuronides. We suggest that the reduced and glucuronidated forms represent novel physiological metabolites of the secoiridoids that should be pursued in vivo and investigated for their biological activity.
Resumo:
It is well known that gut bacteria contribute significantly to the host homeostasis, providing a range of benefits such as immune protection and vitamin synthesis. They also supply the host with a considerable amount of nutrients, making this ecosystem an essential metabolic organ. In the context of increasing evidence of the link between the gut flora and the metabolic syndrome, understanding the metabolic interaction between the host and its gut microbiota is becoming an important challenge of modern biology.1-4 Colonization (also referred to as normalization process) designates the establishment of micro-organisms in a former germ-free animal. While it is a natural process occurring at birth, it is also used in adult germ-free animals to control the gut floral ecosystem and further determine its impact on the host metabolism. A common procedure to control the colonization process is to use the gavage method with a single or a mixture of micro-organisms. This method results in a very quick colonization and presents the disadvantage of being extremely stressful5. It is therefore useful to minimize the stress and to obtain a slower colonization process to observe gradually the impact of bacterial establishment on the host metabolism. In this manuscript, we describe a procedure to assess the modification of hepatic metabolism during a gradual colonization process using a non-destructive metabolic profiling technique. We propose to monitor gut microbial colonization by assessing the gut microbial metabolic activity reflected by the urinary excretion of microbial co-metabolites by 1H NMR-based metabolic profiling. This allows an appreciation of the stability of gut microbial activity beyond the stable establishment of the gut microbial ecosystem usually assessed by monitoring fecal bacteria by DGGE (denaturing gradient gel electrophoresis).6 The colonization takes place in a conventional open environment and is initiated by a dirty litter soiled by conventional animals, which will serve as controls. Rodents being coprophagous animals, this ensures a homogenous colonization as previously described.7 Hepatic metabolic profiling is measured directly from an intact liver biopsy using 1H High Resolution Magic Angle Spinning NMR spectroscopy. This semi-quantitative technique offers a quick way to assess, without damaging the cell structure, the major metabolites such as triglycerides, glucose and glycogen in order to further estimate the complex interaction between the colonization process and the hepatic metabolism7-10. This method can also be applied to any tissue biopsy11,12.
Resumo:
Background and aims CCAAT/enhancer-binding protein alpha (CEBPA) is a transcription factor involved in adipogenesis and energy homeostasis. Caloric restriction reduces CEBPA protein expression in patients with metabolic syndrome (MetS). A previous report linked rs12691 SNP in CEBPA to altered concentration of fasting triglycerides. Our objective was to assess the effects of rs12691 in glucose metabolism in Metabolic Syndrome (MetS) patients. Methods and results Glucose metabolism was assessed by static (glucose, insulin, adiponectin, leptin and resistin plasma concentrations) and dynamic (disposition index, insulin sensitivity index, HOMA-IR and acute insulin response to glucose) indices, performed at baseline and after 12 weeks of 4 dietary interventions (high saturated fatty acid (SFA), high monounsaturated fatty acid (MUFA), low-fat and low-fat-high-n3 polyunsaturated fatty acid (PUFA)) in 486 subjects with MetS. Carriers of the minor A allele of rs12691 had altered disposition index (p = 0.0003), lower acute insulin response (p = 0.005) and a lower insulin sensitivity index (p = 0.025) indicating a lower insulin sensitivity and a lower insulin secretion, at baseline and at the end of the diets. Furthermore, A allele carriers displayed lower HDL concentration. Conclusion The presence of the A allele of rs12691 influences glucose metabolism of MetS patients. Clinical Trials Registry number NCT00429195.
Resumo:
While selenium (Se) is an essential micronutrient for humans, epidemiological studies have raised concern that supranutritional Se intake may increase the risk to develop Type 2 diabetes mellitus (T2DM). We aimed to determine the impact of Se at a dose and source frequently ingested by humans on markers of insulin sensitivity and signalling. Male pigs were fed either a Se-adequate (0.17 mg Se/kg) or a Se-supranutritional (0.50 mg Se/kg; high-Se) diet. After 16 weeks of intervention, fasting plasma insulin and cholesterol levels were non-significantly increased in the high-Se pigs, whereas fasting glucose concentrations did not differ between the two groups. In skeletal muscle of high-Se pigs, glutathione peroxidase activity was increased, gene expression of forkhead box O1 transcription factor and peroxisomal proliferator-activated receptor- coactivator 1 were increased and gene expression of the glycolytic enzyme pyruvate kinase was decreased. In visceral adipose tissue of high-Se pigs, mRNA levels of sterol regulatory element-binding transcription factor 1 were increased, and the phosphorylation of Akt, AMP-activated kinase and mitogen-activated protein kinases was affected. In conclusion, dietary Se oversupply may affect expression and activity of proteins involved in energy metabolism in major insulin target tissues, though this is probably not sufficient to induce diabetes.
Resumo:
Consumption of anthocyanins has been related with beneficial health effects. However, bioavailability studies have shown low concentration of anthocyanins in plasma and urine. In this study, we have investigated the bacterial-dependent metabolism of malvidin-3-glucoside, gallic acid and a mixture of anthocyanins using a pH-controlled, stirred, batch-culture fermentation system reflective of the distal human large intestine conditions. Most anthocyanins have disappeared after 5 h incubation while gallic acid remained constant through the first 5 h and was almost completely degraded following 24 h of fermentation. Incubation of malvidin-3-glucoside with fecal bacteria mainly resulted in the formation of syringic acid, while the mixture of anthocyanins resulted in formation of gallic, syringic and p-coumaric acids. All the anthocyanins tested enhanced significantly the growth of Bif idobacterium spp. and Lactobacillus−Enterococcus spp. These results suggest that anthocyanins and their metabolites may exert a positive modulation of the intestinal bacterial population.
Resumo:
Although interindividual variation in isoflavone metabolism was high, intraindividual variation was low. Only concentrations of O-DMA in plasma and urine appeared to be influenced by sex. Chronic soy consumption does not appear to induce many significant changes to the gut metabolism of isoflavones other than higher beta-glucosidase activity.
Resumo:
Glutamate plays a central role in a wide range of metabolic processes in bacterial cells. This review focuses on the involvement of glutamate in bacterial stress responses. In particular it reviews the role of glutamate metabolism in response against acid stress and other stresses. The glutamate decarboxylase (GAD) system has been implicated in acid tolerance in several bacterial genera. This system facilitates intracellular pH homeostasis by consuming protons in a decarboxylation reaction that produces γ-aminobutyrate (GABA) from glutamate. An antiporter system is usually present to couple the uptake of glutamate to the efflux of GABA. Recent insights into the functioning of this system will be discussed. Finally the intracellular fate of GABA will also be discussed. Many bacteria are capable of metabolising GABA to succinate via the GABA shunt pathway. The role and regulation of this pathway will be addressed in the review. © 2012 The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.
Resumo:
Scope: Our aim was to determine the effects of chronic dietary fat manipulation on postprandial lipaemia according to apolipoprotein (APO)E genotype. Methods and results:Men (mean age 53 (SD 9) years), prospectively recruited for the APOE genotype (n = 12 E3/E3, n = 11 E3/E4), were assigned to a low fat (LF), high fat, high-saturated fat (HSF), and HSF diet with 3.45 g/day docosahexaenoic acid (HSF-DHA), each for an 8-week period in the same order. At the end of each dietary period, a postprandial assessment was performed using a test meal with a macronutrient profile representative of that dietary intervention. A variable postprandial plasma triacylglycerol (TAG) response according to APOE genotype was evident, with a greater sensitivity to the TAG-lowering effects of DHA in APOE4 carriers (p ≤ 0.005). There was a lack of an independent genotype effect on any of the lipid measures. In the groups combined, dietary fat manipulation had a significant impact on lipids in plasma and Svedberg flotation rate (Sf) 60–400 TAG-rich lipoprotein fraction, with lower responses following the HSF-DHA than HSF intervention (p < 0.05). Conclusion: Although a modest impact of APOE genotype was observed on the plasma TAG profile, dietary fat manipulation emerged as a greater modulator of the postprandial lipid response in normolipidaemic men.