73 resultados para Glutamate Release
Resumo:
The glutamate decarboxylase (GAD) system has been shown to be important for the survival of Listeria monocytogenes in low pH environments. The bacterium can use this faculty to maintain pH homeostasis under acidic conditions. The accepted model for the GAD system proposes that the antiport of glutamate into the bacterial cell in exchange for γ-aminobutyric acid (GABA) is coupled to an intracellular decarboxylation reaction of glutamate into GABA that consumes protons and therefore facilitates pH homeostasis. Most strains of L. monocytogenes possess three decarboxylase genes (gadD1, D2 & D3) and two antiporter genes (gadT1 & gadT2). Here, we confirm that the gadD3 encodes a glutamate decarboxylase dedicated to the intracellular GAD system (GADi), which produces GABA from cytoplasmic glutamate in the absence of antiport activity. We also compare the functionality of the GAD system between two commonly studied reference strains, EGD-e and 10403S with differences in terms of acid resistance. Through functional genomics we show that EGD-e is unable to export GABA and relies exclusively in the GADi system, which is driven primarily by GadD3 in this strain. In contrast 10403S relies upon GadD2 to maintain both an intracellular and extracellular GAD system (GADi/GADe). Through experiments with a murinised variant of EGD-e (EGDm) in mice, we found that the GAD system plays a significant role in the overall virulence of this strain. Double mutants lacking either gadD1D3 or gadD2D3 of the GAD system displayed reduced acid tolerance and were significantly affected in their ability to cause infection following oral inoculation. Since EGDm exploits GADi but not GADe the results indicate that the GADi system makes a contribution to virulence within the mouse. Furthermore, we also provide evidence that there might be a separate line of evolution in the GAD system between two commonly used reference strains.
Resumo:
Polyommatus bellargus is a priority species of butterfly in the UK as a result of its scarcity and the rate of population decline over the last few years. In the UK, the species is associated with chalk grassland on hot, south-facing slopes suitable for the growth of the food plant Hippocrepis comosa. Shooting game birds is a popular pastime in the UK. Over 40 million game birds, principally Phasianus colchicus and Alectoris rufa, are bred and released into the countryside each year for shooting interests. There is a concern that the release of such a large number of non-native birds has an adverse effect on native wildlife. A study was carried out over a period of 3 years out to examine whether there was any evidence that A. rufa released into chalk grassland habitat negatively affects populations of P. bellargus. A comparison was made between sites where large numbers of A. rufa were released versus sites where no, or few, birds were released. The study involved the construction of exclosures in these sites to allow an examination of the number of butterflies emerging from H. comosa when the birds were excluded versus when the birds had free range across the area. Where birds were present the on-site vegetation was shorter than where they were absent indicating that the birds were definitely influencing habitat structure. However, the evidence that A. rufa was negatively influencing the number of adult butterflies emerging was not strong, although there was a largely non-significant tendency for higher butterfly emergence when the birds were excluded or absent.
Resumo:
Synaptic vesicle glycoprotein (SV)2A is a transmembrane protein found in secretory vesicles and is critical for Ca2+-dependent exocytosis in central neurons, although its mechanism of action remains uncertain. Previous studies have proposed, variously, a role of SV2 in the maintenance and formation of the readily releasable pool (RRP) or in the regulation of Ca2+ responsiveness of primed vesicles. Such previous studies have typically used genetic approaches to ablate SV2 levels; here, we used a strategy involving small interference RNA (siRNA) injection to knockdown solely presynaptic SV2A levels in rat superior cervical ganglion (SCG) neuron synapses. Moreover, we investigated the effects of SV2A knockdown on voltage-dependent Ca2+ channel (VDCC) function in SCG neurons. Thus, we extended the studies of SV2A mechanisms by investigating the effects on vesicular transmitter release and VDCC function in peripheral sympathetic neurons. We first demonstrated an siRNA-mediated SV2A knockdown. We showed that this SV2A knockdown markedly affected presynaptic function, causing an attenuated RRP size, increased paired-pulse depression and delayed RRP recovery after stimulus-dependent depletion. We further demonstrated that the SV2A–siRNA-mediated effects on vesicular release were accompanied by a reduction in VDCC current density in isolated SCG neurons. Together, our data showed that SV2A is required for correct transmitter release at sympathetic neurons. Mechanistically, we demonstrated that presynaptic SV2A: (i) acted to direct normal synaptic transmission by maintaining RRP size, (ii) had a facilitatory role in recovery from synaptic depression, and that (iii) SV2A deficits were associated with aberrant Ca2+ current density, which may contribute to the secretory phenotype in sympathetic peripheral neurons.
Resumo:
Previous research on the repeat exposure to a novel flavour combined with monosodium glutamate (MSG) has shown an increase in liking and consumption for the particular flavour. The aim of the current work was to investigate whether this could also be observed in the case of older people, since they are most affected by undernutrition in the developed world and ways to increase consumption of food are of significant importance for this particular age group. For this study, 40 older adults (age 65-88) repeatedly consumed potato soup with two novel flavours (lemongrass and cumin) which were either with or without a high level of MSG (5%w/w). A randomized single blind within-subject design was implemented, where each participant was exposed to both soup flavours three times over 6 days, with one of the soup flavours containing MSG. After three repeat exposures, consumption increased significantly for the soups where the flavours had contained MSG during the repeated exposure (mean weight consumed increased from 123 to 164 g, p=0.017), implying that glutamate conditioned for increased wanting and consumption, despite the fact that the liking for the soup had not increased.
Resumo:
We investigated the plume structure of a piezo-electric sprayer system, set up to release ethanol in a wind tunnel, using a fast response mini-photoionizaton detector. We recorded the plume structure of four different piezo-sprayer configurations: the sprayer alone; with a 1.6-mm steel mesh shield; with a 3.2-mm steel mesh shield; and with a 5 cm circular upwind baffle. We measured a 12 × 12-mm core at the center of the plume, and both a horizontal and vertical cross-section of the plume, all at 100-, 200-, and 400-mm downwind of the odor source. Significant differences in plume structure were found among all configurations in terms of conditional relative mean concentration, intermittency, ratio of peak concentration to conditional mean concentration, and cross-sectional area of the plume. We then measured the flight responses of the almond moth, Cadra cautella, to odor plumes generated with the sprayer alone, and with the upwind baffle piezo-sprayer configuration, releasing a 13:1 ratio of (9Z,12E)-tetradecadienyl acetate and (Z)-9-tetradecenyl acetate diluted in ethanol at release rates of 1, 10, 100, and 1,000 pg/min. For each configuration, differences in pheromone release rate resulted in significant differences in the proportions of moths performing oriented flight and landing behaviors. Additionally, there were apparent differences in the moths’ behaviors between the two sprayer configurations, although this requires confirmation with further experiments. This study provides evidence that both pheromone concentration and plume structure affect moth orientation behavior and demonstrates that care is needed when setting up experiments that use a piezo-electric release system to ensure the optimal conditions for behavioral observations.
Resumo:
Arousal sometimes enhances and sometimes impairs perception and memory. In our Glutamate Amplifies Noradrenergic Effects (GANE) model, glutamate at active synapses interacts with norepinephrine released by the locus coeruleus to create local ‘hot spots’ of activity that enable the selective effects of arousal. This hot spot mechanism allows local cortical regions to self-regulate norepinephrine release based on current activation levels. In turn, hot spots bias global energetic delivery and functional network connectivity to enhance processing of high priority representations and impair processing of lower priority representations.
Resumo:
The need to source live human tissues for research and clinical applications has been a major driving force for the development of new biomaterials. Ideally, these should elicit the formation of scaffold-free tissues with native-like structure and composition. In this study, we describe a biologically interactive coating that combines the fabrication and subsequent self-release of live purposeful tissues using template–cell–environment feedback. This smart coating was formed from a self-assembling peptide amphiphile comprising a proteasecleavable sequence contiguous with a cell attachment and signaling motif. This multifunctional material was subsequently used not only to instruct human corneal or skin fibroblasts to adhere and deposit discreet multiple layers of native extracellular matrix but also to govern their own self-directed release from the template solely through the action of endogenous metalloproteases. Tissues recovered through this physiologically relevant process were carrier-free and structurally and phenotypically equivalent to their natural counterparts. This technology contributes to a new paradigm in regenerative medicine, whereby materials are able to actively direct and respond to cell behavior. The novel application of such materials as a coating capable of directing the formation and detachment of complex tissues solely under physiological conditions can have broad use for fundamental research and in future cell and tissue therapies.
Resumo:
We present a novel but simple enteric coated sphere formulation containing probiotic bacteria (Lactobacillus casei). Oral delivery of live bacterial cells (LBC) requires live cells to survive firstly manufacturing processes and secondly GI microbicidal defenses including gastric acid. We incorporated live L. casei directly in the granulation liquid, followed by granulation, extrusion, spheronization, drying and spray coating to produce dried live probiotic spheres. A blend of MCC, calcium-crosslinked alginate, and lactose was developed that gave improved live cell survival during manufacturing, and gave excellent protection from gastric acid plus rapid release in intestinal conditions. No significant loss of viability was observed in all steps except drying, which resulted in approximately 1 log loss of viable cells. Eudragit coating was used to protect dried live cells from acid, and microcrystalline cellulose (MCC) was combined with sodium alginate to achieve efficient sphere disintegration leading to rapid and complete bacterial cell release in intestinal conditions. Viability and release of L. casei was evaluated in vitro in simulated GI conditions. Uncoated spheres gave partial acid protection, but enteric coated spheres effectively protected dried probiotic LBC from acid for 2 h, and subsequently released all viable cells within 1h of transfer into simulated intestinal fluid.
Resumo:
In this study we applied a smart biomaterial formed from a self-assembling, multi-functional synthetic peptide amphiphile (PA) to coat substrates with various surface chemistries. The combination of PA coating and alignment-inducing functionalised substrates provided a template to instruct human corneal stromal fibroblasts to adhere, become aligned and then bio-fabricate a highlyordered, multi-layered, three-dimensional tissue by depositing an aligned, native-like extracellular matrix. The newly-formed corneal tissue equivalent was subsequently able to eliminate the adhesive properties of the template and govern its own complete release via the action of endogenous proteases. Tissues recovered through this method were structurally stable, easily handled, and carrier-free. Furthermore, topographical and mechanical analysis by atomic force microscopy showed that tissue equivalents formed on the alignment-inducing PA template had highly-ordered, compact collagen deposition, with a two-fold higher elastic modulus compared to the less compact tissues produced on the non-alignment template, the PA-coated glass. We suggest that this technology represents a new paradigm in tissue engineering and regenerative medicine, whereby all processes for the biofabrication and subsequent self-release of natural, bioprosthetic human tissues depend solely on simple templatetissue feedback interactions.
Resumo:
A range of carbamate functionalized 1,4-disubstituted triazoles featuring a base sensitive trigger residue, plus a model aromatic amine reporter group, were prepared via copper(I) catalysed azide–alkyne cycloaddition and evaluated for their self-immolative characteristics. This study revealed a clear structure–reactivity relationship, via Hammett analysis, between the structure of the 1,4-disubstituted triazole and the rate of self-immolative release of the amine reporter group, thus demonstrating that under basic conditions this type of triazole derivative has the potential to be employed in a range of chemical release systems.
Resumo:
Retrograde transport of NF-κB from the synapse to the nucleus in neurons is mediated by the dynein/dynactin motor complex and can be triggered by synaptic activation. The calibre of axons is highly variable ranging down to 100 nm, aggravating the investigation of transport processes in neurites of living neurons using conventional light microscopy. In this study we quantified for the first time the transport of the NF-κB subunit p65 using high-density single-particle tracking in combination with photoactivatable fluorescent proteins in living mouse hippocampal neurons. We detected an increase of the mean diffusion coefficient (Dmean) in neurites from 0.12 ± 0.05 µm2/s to 0.61 ± 0.03 µm2/s after stimulation with glutamate. We further observed that the relative amount of retrogradely transported p65 molecules is increased after stimulation. Glutamate treatment resulted in an increase of the mean retrograde velocity from 10.9 ± 1.9 to 15 ± 4.9 µm/s, whereas a velocity increase from 9 ± 1.3 to 14 ± 3 µm/s was observed for anterogradely transported p65. This study demonstrates for the first time that glutamate stimulation leads to an increased mobility of single NF-κB p65 molecules in neurites of living hippocampal neurons.
Resumo:
Synthetic tripeptide based noncytotoxic hydrogelators have been discovered for releasing an anticancer drug at physiological pH and temparature. Interestingly, gel stiffness, drug release capacity and proteolytic stability of these hydrogels have been successfully modulated by incorporating D-amino acid residues, indicating their potential use for drug delivery in the future.