192 resultados para Global climate changes
Resumo:
Global climate change and its impacts are being increasingly studied and precipitation trends are one of the measures of quantifying climate change especially in the tropics. This study uses daily rainfall data to determine if there are changes in the long-term trends in rainfall variability in the East Coast Mountains of Mauritius during the last few decades, and to investigate the factors influencing the trends in the inter-annual to inter-decadal rainfall variability. Statistical modelling has been used to investigate the trends in total seasonal rainfall, the number of rain days and the mean amount of rain per rainy days and the local, regional and large-scale factors that affect them on inter-annual to inter-decadal time scales. The strongest inter-decadal trend was found in the number of rain days for both rainfall seasons, and the other variables were found to have weak or insignificant trends. Both local factors, such as the surrounding sea surface temperatures and large-scale phenomena such as Indian Monsoon and the El Niño Southern Oscillation were found to influence rainfall patterns.
Resumo:
Projections of future global sea level depend on reliable estimates of changes in the size of polar ice sheets. Calculating this directly from global general circulation models (GCMs) is unreliable because the coarse resolution of 100 km or more is unable to capture narrow ablation zones, and ice dynamics is not usually taken into account in GCMs. To overcome these problems a high-resolution (20 km) dynamic ice sheet model has been coupled to the third Hadley Centre Coupled Ocean-Atmosphere GCM (HadCM3). A novel feature is the use of two-way coupling, so that climate changes in the GCM drive ice mass changes in the ice sheet model that, in turn, can alter the future climate through changes in orography, surface albedo, and freshwater input to the model ocean. At the start of the main experiment the atmospheric carbon dioxide concentration was increased to 4 times the preindustrial level and held constant for 3000 yr. By the end of this period the Greenland ice sheet is almost completely ablated and has made a direct contribution of approximately 7 m to global average sea level, causing a peak rate of sea level rise of 5 mm yr-1 early in the simulation. The effect of ice sheet depletion on global and regional climate has been examined and it was found that apart from the sea level rise, the long-term effect on global climate is small. However, there are some significant regional climate changes that appear to have reduced the rate at which the ice sheet ablates.
Resumo:
Sea level changes resulting from CO2-induced climate changes in ocean density and circulation have been investigated in a series of idealised experiments with the Hadley Centre HadCM3 AOGCM. Changes in the mass of the ocean were not included. In the global mean, salinity changes have a negligible effect compared with the thermal expansion of the ocean. Regionally, sea level changes are projected to deviate greatly from the global mean (standard deviation is 40% of the mean). Changes in surface fluxes of heat, freshwater and wind stress are all found to produce significant and distinct regional sea level changes, wind stress changes being the most important and the cause of several pronounced local features, while heat and freshwater flux changes affect large parts of the North Atlantic and Southern Ocean. Regional change is related mainly to density changes, with a relatively small contribution in mid and high latitudes from change in the barotropic circulation. Regional density change has an important contribution from redistribution of ocean heat content. In general, unlike in the global mean, the regional pattern of sea level change due to density change appears to be influenced almost as much by salinity changes as by temperature changes, often in opposition. Such compensation is particularly marked in the North Atlantic, where it is consistent with recent observed changes. We suggest that density compensation is not a property of climate change specifically, but a general behavior of the ocean.
Resumo:
This report forms part of a larger research programme on 'Reinterpreting the Urban-Rural Continuum', which conceptualises and investigates current knowledge and research gaps concerning 'the role that ecosystems services play in the livelihoods of the poor in regions undergoing rapid change'. The report aims to conduct a baseline appraisal of water-dependant ecosystem services, the roles they play within desakota livelihood systems and their potential sensitivity to climate change. The appraisal is conducted at three spatial scales: global, regional (four consortia areas), and meso scale (case studies within the four regions). At all three scales of analysis water resources form the interweaving theme because water provides a vital provisioning service for people, supports all other ecosystem processes and because water resources are forecast to be severely affected under climate change scenarios. This report, combined with an Endnote library of over 1100 scientific papers, provides an annotated bibliography of water-dependant ecosystem services, the roles they play within desakota livelihood systems and their potential sensitivity to climate change. After an introductory, section, Section 2 of the report defines water-related ecosystem services and how these are affected by human activities. Current knowledge and research gaps are then explored in relation to global scale climate and related hydrological changes (e.g. floods, droughts, flow regimes) (section 3). The report then discusses the impacts of climate changes on the ESPA regions, emphasising potential responses of biomes to the combined effects of climate change and human activities (particularly land use and management), and how these effects coupled with water store and flow regime manipulation by humans may affect the functioning of catchments and their ecosystem services (section 4). Finally, at the meso-scale, case studies are presented from within the ESPA regions to illustrate the close coupling of human activities and catchment performance in the context of environmental change (section 5). At the end of each section, research needs are identified and justified. These research needs are then amalgamated in section 6.
Resumo:
Uncertainties associated with the representation of various physical processes in global climate models (GCMs) mean that, when projections from GCMs are used in climate change impact studies, the uncertainty propagates through to the impact estimates. A complete treatment of this ‘climate model structural uncertainty’ is necessary so that decision-makers are presented with an uncertainty range around the impact estimates. This uncertainty is often underexplored owing to the human and computer processing time required to perform the numerous simulations. Here, we present a 189-member ensemble of global river runoff and water resource stress simulations that adequately address this uncertainty. Following several adaptations and modifications, the ensemble creation time has been reduced from 750 h on a typical single-processor personal computer to 9 h of high-throughput computing on the University of Reading Campus Grid. Here, we outline the changes that had to be made to the hydrological impacts model and to the Campus Grid, and present the main results. We show that, although there is considerable uncertainty in both the magnitude and the sign of regional runoff changes across different GCMs with climate change, there is much less uncertainty in runoff changes for regions that experience large runoff increases (e.g. the high northern latitudes and Central Asia) and large runoff decreases (e.g. the Mediterranean). Furthermore, there is consensus that the percentage of the global population at risk to water resource stress will increase with climate change.
Resumo:
Natural resource-dependent societies in developing countries are facing increased pressures linked to global climate change. While social-ecological systems evolve to accommodate variability, there is growing evidence that changes in drought, storm and flood extremes are increasing exposure of currently vulnerable populations. In many countries in Africa, these pressures are compounded by disruption to institutions and variability in livelihoods and income. The interactions of both rapid and slow onset livelihood disturbance contribute to enduring poverty and slow processes of rural livelihood renewal across a complex landscape. We explore cross-scale dynamics in coping and adaptation response, drawing on qualitative data from a case study in Mozambique. The research characterises the engagements across multiple institutional scales and the types of agents involved, providing insight into emergent conditions for adaptation to climate change in rural economies, The analysis explores local responses to climate shocks, food security and poverty reduction, through informal institutions, forms of livelihood diversification and collective land-use systems that allow reciprocity, flexibility and the ability to buffer shocks. However, the analysis shows that agricultural initiatives have helped to facilitate effective livelihood renewal, through the reorganisation of social institutions and opportunities for communication, innovation and micro-credit. Although there are challenges to mainstreaming adaptation at different scales, this research shows why it is critical to assess how policies can protect conditions for emergence of livelihood transformation. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Every winter, the high-latitude oceans are struck by severe storms that are considerably smaller than the weather-dominating synoptic depressions1. Accompanied by strong winds and heavy precipitation, these often explosively developing mesoscale cyclones—termed polar lows1—constitute a threat to offshore activities such as shipping or oil and gas exploitation. Yet owing to their small scale, polar lows are poorly represented in the observational and global reanalysis data2 often used for climatological investigations of atmospheric features and cannot be assessed in coarse-resolution global simulations of possible future climates. Here we show that in a future anthropogenically warmed climate, the frequency of polar lows is projected to decline. We used a series of regional climate model simulations to downscale a set of global climate change scenarios3 from the Intergovernmental Panel of Climate Change. In this process, we first simulated the formation of polar low systems in the North Atlantic and then counted the individual cases. A previous study4 using NCEP/NCAR re-analysis data5 revealed that polar low frequency from 1948 to 2005 did not systematically change. Now, in projections for the end of the twenty-first century, we found a significantly lower number of polar lows and a northward shift of their mean genesis region in response to elevated atmospheric greenhouse gas concentration. This change can be related to changes in the North Atlantic sea surface temperature and mid-troposphere temperature; the latter is found to rise faster than the former so that the resulting stability is increased, hindering the formation or intensification of polar lows. Our results provide a rare example of a climate change effect in which a type of extreme weather is likely to decrease, rather than increase.
Resumo:
We analyze the publicly released outputs of the simulations performed by climate models (CMs) in preindustrial (PI) and Special Report on Emissions Scenarios A1B (SRESA1B) conditions. In the PI simulations, most CMs feature biases of the order of 1 W m −2 for the net global and the net atmospheric, oceanic, and land energy balances. This does not result from transient effects but depends on the imperfect closure of the energy cycle in the fluid components and on inconsistencies over land. Thus, the planetary emission temperature is underestimated, which may explain the CMs' cold bias. In the PI scenario, CMs agree on the meridional atmospheric enthalpy transport's peak location (around 40°N/S), while discrepancies of ∼20% exist on the intensity. Disagreements on the oceanic transport peaks' location and intensity amount to ∼10° and ∼50%, respectively. In the SRESA1B runs, the atmospheric transport's peak shifts poleward, and its intensity increases up to ∼10% in both hemispheres. In most CMs, the Northern Hemispheric oceanic transport decreases, and the peaks shift equatorward in both hemispheres. The Bjerknes compensation mechanism is active both on climatological and interannual time scales. The total meridional transport peaks around 35° in both hemispheres and scenarios, whereas disagreements on the intensity reach ∼20%. With increased CO 2 concentration, the total transport increases up to ∼10%, thus contributing to polar amplification of global warming. Advances are needed for achieving a self-consistent representation of climate as a nonequilibrium thermodynamical system. This is crucial for improving the CMs' skill in representing past and future climate changes.
Resumo:
The effect of a warmer climate on the properties of extra-tropical cyclones is investigated using simulations of the ECHAM5 global climate model at resolutions of T213 (60 km) and T319 (40 km). Two periods representative of the end of the 20th and 21st centuries are investigated using the IPCC A1B scenario. The focus of the paper is on precipitation for the NH summer and winter seasons, however results from vorticity and winds are also presented. Similar number of events are identified at both resolutions. There are, however, a greater number of extreme precipitation events in the higher reso- lution run. The difference between maximum intensity distributions are shown to be statistically significant using a Kolmogorov-Smirnov test. A Generalised Pareto Distribution is used to analyse changes in extreme precipitation and wind events. In both resolutions, there is an increase in the number of ex- treme precipitation events in a warmer climate for all seasons, together with a reduction in return period. This is not associated with any increased verti- cal velocity, or with any increase in wind intensity in the winter and spring. However, there is an increase in wind extremes in the summer and autumn associated with tropical cyclones migrating into the extra-tropics.
Resumo:
The time at which the signal of climate change emerges from the noise of natural climate variability (Time of Emergence, ToE) is a key variable for climate predictions and risk assessments. Here we present a methodology for estimating ToE for individual climate models, and use it to make maps of ToE for surface air temperature (SAT) based on the CMIP3 global climate models. Consistent with previous studies we show that the median ToE occurs several decades sooner in low latitudes, particularly in boreal summer, than in mid-latitudes. We also show that the median ToE in the Arctic occurs sooner in boreal winter than in boreal summer. A key new aspect of our study is that we quantify the uncertainty in ToE that arises not only from inter-model differences in the magnitude of the climate change signal, but also from large differences in the simulation of natural climate variability. The uncertainty in ToE is at least 30 years in the regions examined, and as much as 60 years in some regions. Alternative emissions scenarios lead to changes in both the median ToE (by a decade or more) and its uncertainty. The SRES B1 scenario is associated with a very large uncertainty in ToE in some regions. Our findings have important implications for climate modelling and climate policy which we discuss.
Resumo:
Global climate change results from a small yet persistent imbalance between the amount of sunlight absorbed by Earth and the thermal radiation emitted back to space. An apparent inconsistency has been diagnosed between interannual variations in the net radiation imbalance inferred from satellite measurements and upper-ocean heating rate from in situ measurements, and this inconsistency has been interpreted as ‘missing energy’ in the system. Here we present a revised analysis of net radiation at the top of the atmosphere from satellite data, and we estimate ocean heat content, based on three independent sources. We find that the difference between the heat balance at the top of the atmosphere and upper-ocean heat content change is not statistically significant when accounting for observational uncertainties in ocean measurements, given transitions in instrumentation and sampling. Furthermore, variability in Earth’s energy imbalance relating to El Niño-Southern Oscillation is found to be consistent within observational uncertainties among the satellite measurements, a reanalysis model simulation and one of the ocean heat content records. We combine satellite data with ocean measurements to depths of 1,800 m, and show that between January 2001 and December 2010, Earth has been steadily accumulating energy at a rate of 0.50±0.43 Wm−2 (uncertainties at the 90% confidence level). We conclude that energy storage is continuing to increase in the sub-surface ocean.
Resumo:
An analysis of the climate of precipitation extremes as simulated by six European regional climate models (RCMs) is undertaken in order to describe/quantify future changes and to examine/interpret differences between models. Each model has adopted boundary conditions from the same ensemble of global climate model integrations for present (1961–1990) and future (2071–2100) climate under the Intergovernmental Panel on Climate Change A2 emission scenario. The main diagnostics are multiyear return values of daily precipitation totals estimated from extreme value analysis. An evaluation of the RCMs against observations in the Alpine region shows that model biases for extremes are comparable to or even smaller than those for wet day intensity and mean precipitation. In winter, precipitation extremes tend to increase north of about 45°N, while there is an insignificant change or a decrease to the south. In northern Europe the 20-year return value of future climate corresponds to the 40- to 100-year return value of present climate. There is a good agreement between the RCMs, and the simulated change is similar to a scaling of present-day extremes by the change in average events. In contrast, there are large model differences in summer when RCM formulation contributes significantly to scenario uncertainty. The model differences are well explained by differences in the precipitation frequency and intensity process, but in all models, extremes increase more or decrease less than would be expected from the scaling of present-day extremes. There is evidence for a component of the change that affects extremes specifically and is consistent between models despite the large variation in the total response.
Resumo:
The Intergovernmental Panel on Climate Change fourth assessment report, published in 2007 came to a more confident assessment of the causes of global temperature change than previous reports and concluded that ‘it is likely that there has been significant anthropogenic warming over the past 50 years averaged over each continent except Antarctica.’ Since then, warming over Antarctica has also been attributed to human influence, and further evidence has accumulated attributing a much wider range of climate changes to human activities. Such changes are broadly consistent with theoretical understanding, and climate model simulations, of how the planet is expected to respond. This paper reviews this evidence from a regional perspective to reflect a growing interest in understanding the regional effects of climate change, which can differ markedly across the globe. We set out the methodological basis for detection and attribution and discuss the spatial scales on which it is possible to make robust attribution statements. We review the evidence showing significant human-induced changes in regional temperatures, and for the effects of external forcings on changes in the hydrological cycle, the cryosphere, circulation changes, oceanic changes, and changes in extremes. We then discuss future challenges for the science of attribution. To better assess the pace of change, and to understand more about the regional changes to which societies need to adapt, we will need to refine our understanding of the effects of external forcing and internal variability
Resumo:
Climate modeling is a complex process, requiring accurate and complete metadata in order to identify, assess and use climate data stored in digital repositories. The preservation of such data is increasingly important given the development of ever-increasingly complex models to predict the effects of global climate change. The EU METAFOR project has developed a Common Information Model (CIM) to describe climate data and the models and modelling environments that produce this data. There is a wide degree of variability between different climate models and modelling groups. To accommodate this, the CIM has been designed to be highly generic and flexible, with extensibility built in. METAFOR describes the climate modelling process simply as "an activity undertaken using software on computers to produce data." This process has been described as separate UML packages (and, ultimately, XML schemas). This fairly generic structure canbe paired with more specific "controlled vocabularies" in order to restrict the range of valid CIM instances. The CIM will aid digital preservation of climate models as it will provide an accepted standard structure for the model metadata. Tools to write and manage CIM instances, and to allow convenient and powerful searches of CIM databases,. Are also under development. Community buy-in of the CIM has been achieved through a continual process of consultation with the climate modelling community, and through the METAFOR team’s development of a questionnaire that will be used to collect the metadata for the Intergovernmental Panel on Climate Change’s (IPCC) Coupled Model Intercomparison Project Phase 5 (CMIP5) model runs.
Resumo:
The impending threat of global climate change and its regional manifestations is among the most important and urgent problems facing humanity. Society needs accurate and reliable estimates of changes in the probability of regional weather variations to develop science-based adaptation and mitigation strategies. Recent advances in weather prediction and in our understanding and ability to model the climate system suggest that it is both necessary and possible to revolutionize climate prediction to meet these societal needs. However, the scientific workforce and the computational capability required to bring about such a revolution is not available in any single nation. Motivated by the success of internationally funded infrastructure in other areas of science, this paper argues that, because of the complexity of the climate system, and because the regional manifestations of climate change are mainly through changes in the statistics of regional weather variations, the scientific and computational requirements to predict its behavior reliably are so enormous that the nations of the world should create a small number of multinational high-performance computing facilities dedicated to the grand challenges of developing the capabilities to predict climate variability and change on both global and regional scales over the coming decades. Such facilities will play a key role in the development of next-generation climate models, build global capacity in climate research, nurture a highly trained workforce, and engage the global user community, policy-makers, and stakeholders. We recommend the creation of a small number of multinational facilities with computer capability at each facility of about 20 peta-flops in the near term, about 200 petaflops within five years, and 1 exaflop by the end of the next decade. Each facility should have sufficient scientific workforce to develop and maintain the software and data analysis infrastructure. Such facilities will enable questions of what resolution, both horizontal and vertical, in atmospheric and ocean models, is necessary for more confident predictions at the regional and local level. Current limitations in computing power have placed severe limitations on such an investigation, which is now badly needed. These facilities will also provide the world's scientists with the computational laboratories for fundamental research on weather–climate interactions using 1-km resolution models and on atmospheric, terrestrial, cryospheric, and oceanic processes at even finer scales. Each facility should have enabling infrastructure including hardware, software, and data analysis support, and scientific capacity to interact with the national centers and other visitors. This will accelerate our understanding of how the climate system works and how to model it. It will ultimately enable the climate community to provide society with climate predictions, which are based on our best knowledge of science and the most advanced technology.