64 resultados para Genetic Algorithms, Adaptation, Internet Computing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theory predicts the emergence of generalists in variable environments and antagonistic pleiotropy to favour specialists in constant environments, but empirical data seldom support such generalist–specialist trade-offs. We selected for generalists and specialists in the dung fly Sepsis punctum (Diptera: Sepsidae) under conditions that we predicted would reveal antagonistic pleiotropy and multivariate trade-offs underlying thermal reaction norms for juvenile development. We performed replicated laboratory evolution using four treatments: adaptation at a hot (31 °C) or a cold (15 °C) temperature, or under regimes fluctuating between these temperatures, either within or between generations. After 20 generations, we assessed parental effects and genetic responses of thermal reaction norms for three correlated life-history traits: size at maturity, juvenile growth rate and juvenile survival. We find evidence for antagonistic pleiotropy for performance at hot and cold temperatures, and a temperature-mediated trade-off between juvenile survival and size at maturity, suggesting that trade-offs associated with environmental tolerance can arise via intensified evolutionary compromises between genetically correlated traits. However, despite this antagonistic pleiotropy, we found no support for the evolution of increased thermal tolerance breadth at the expense of reduced maximal performance, suggesting low genetic variance in the generalist–specialist dimension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In e-health intervention studies, there are concerns about the reliability of internet-based, self-reported (SR) data and about the potential for identity fraud. This study introduced and tested a novel procedure for assessing the validity of internet-based, SR identity and validated anthropometric and demographic data via measurements performed face-to-face in a validation study (VS). Participants (n = 140) from seven European countries, participating in the Food4Me intervention study which aimed to test the efficacy of personalised nutrition approaches delivered via the internet, were invited to take part in the VS. Participants visited a research centre in each country within 2 weeks of providing SR data via the internet. Participants received detailed instructions on how to perform each measurement. Individual’s identity was checked visually and by repeated collection and analysis of buccal cell DNA for 33 genetic variants. Validation of identity using genomic information showed perfect concordance between SR and VS. Similar results were found for demographic data (age and sex verification). We observed strong intra-class correlation coefficients between SR and VS for anthropometric data (height 0.990, weight 0.994 and BMI 0.983). However, internet-based SR weight was under-reported (Δ −0.70 kg [−3.6 to 2.1], p < 0.0001) and, therefore, BMI was lower for SR data (Δ −0.29 kg m−2 [−1.5 to 1.0], p < 0.0001). BMI classification was correct in 93 % of cases. We demonstrate the utility of genotype information for detection of possible identity fraud in e-health studies and confirm the reliability of internet-based, SR anthropometric and demographic data collected in the Food4Me study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important application of Big Data Analytics is the real-time analysis of streaming data. Streaming data imposes unique challenges to data mining algorithms, such as concept drifts, the need to analyse the data on the fly due to unbounded data streams and scalable algorithms due to potentially high throughput of data. Real-time classification algorithms that are adaptive to concept drifts and fast exist, however, most approaches are not naturally parallel and are thus limited in their scalability. This paper presents work on the Micro-Cluster Nearest Neighbour (MC-NN) classifier. MC-NN is based on an adaptive statistical data summary based on Micro-Clusters. MC-NN is very fast and adaptive to concept drift whilst maintaining the parallel properties of the base KNN classifier. Also MC-NN is competitive compared with existing data stream classifiers in terms of accuracy and speed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analysed Hordeum spontaneum accessions from 21 different locations to understand the genetic diversity of HsDhn3 alleles and effects of single base mutations on the intrinsically disordered structure of the resulting polypeptide (HsDHN3). HsDHN3 was found to be YSK2-type with a low-frequency 6-aa deletion in the beginning of Exon 1. There is relatively high diversity in the intron region of HsDhn3 compared to the two exon regions. We have found subtle differences in K segments led to changes in amino acids chemical properties. Predictions for protein interaction profiles suggest the presence of a protein-binding site in HsDHN3 that coincides with the K1 segment. Comparison of DHN3 to closely related cereals showed that all of them contain a nuclear localization signal sequence flanking to the K1 segment and a novel conserved region located between the S and K1 segments [E(D/T)DGMGGR]. We found that H. vulgare, H. spontaneum, and Triticum urartu DHN3s have a greater number of phosphorylation sites for protein kinase C than other cereal species, which may be related to stress adaptation. Our results show that the nature and extent of mutations in the conserved segments of K1 and K2 are likely to be key factors in protection of cells.