65 resultados para Functional differential equations


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In visual tracking experiments, distributions of the relative phase be-tween target and tracer showed positive relative phase indicating that the tracer precedes the target position. We found a mode transition from the reactive to anticipatory mode. The proposed integrated model provides a framework to understand the antici-patory behaviour of human, focusing on the integration of visual and soma-tosensory information. The time delays in visual processing and somatosensory feedback are explicitly treated in the simultaneous differential equations. The anticipatory behaviour observed in the visual tracking experiments can be ex-plained by the feedforward term of target velocity, internal dynamics, and time delay in somatosensory feedback.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We establish an uniform factorial decay estimate for the Taylor approximation of solutions to controlled differential equations. Its proof requires a factorial decay estimate for controlled paths which is interesting in its own right.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We construct a quasi-sure version (in the sense of Malliavin) of geometric rough paths associated with a Gaussian process with long-time memory. As an application we establish a large deviation principle (LDP) for capacities for such Gaussian rough paths. Together with Lyons' universal limit theorem, our results yield immediately the corresponding results for pathwise solutions to stochastic differential equations driven by such Gaussian process in the sense of rough paths. Moreover, our LDP result implies the result of Yoshida on the LDP for capacities over the abstract Wiener space associated with such Gaussian process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study spectral properties of the Laplace-Beltrami operator on two relevant almost-Riemannian manifolds, namely the Grushin structures on the cylinder and on the sphere. This operator contains first order diverging terms caused by the divergence of the volume. We get explicit descriptions of the spectrum and the eigenfunctions. In particular in both cases we get a Weyl's law with leading term Elog E. We then study the drastic effect of Aharonov-Bohm magnetic potentials on the spectral properties. Other generalised Riemannian structures including conic and anti-conic type manifolds are also studied. In this case, the Aharonov-Bohm magnetic potential may affect the self-adjointness of the Laplace-Beltrami operator.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the context of controlled differential equations, the signature is the exponential function on paths. B. Hambly and T. Lyons proved that the signature of a bounded variation path is trivial if and only if the path is tree-like. We extend Hambly–Lyons' result and their notion of tree-like paths to the setting of weakly geometric rough paths in a Banach space. At the heart of our approach is a new definition for reduced path and a lemma identifying the reduced path group with the space of signatures.