92 resultados para Frontiers
Resumo:
We study the behavior and emotional arousal of the participants in an experimental auction, leading to an asymmetric social dilemma involving an auctioneer and two bidders. An antisocial transfer (bribe) which is beneficial for the auctioneer (official) is paid, if promised, by the winner of the auction. Some pro-social behavior on both the auctioneers' and the bidders' sides is observed even in the absence of any punishment mechanism (Baseline, Treatment 0). However, pro-social behavior is adopted by the vast majority of subjects when the loser of the auction can inspect the transaction between the winner and the auctioneer (Inspection, Treatment 1). The inspection and punishment mechanism is such that, if a bribe is (not) revealed, both corrupt agents (the denouncing bidder) lose(s) this period's payoffs. This renders the inspection option unprofitable for the loser and is rarely used, especially towards the end of the session, when pro-social behavior becomes pervasive. Subjects' emotional arousal was obtained through skin conductance responses. Generally speaking, our findings suggest that stronger emotions are associated with decisions deviating from pure monetary reward maximization, rather than with (un)ethical behavior per se. In fact, using response times as a measure of the subject's reflection during the decision-making process, we can associate emotional arousal with the conflict between primary or instinctive and secondary or contemplative motivations and, more specifically, with deviations from the subject's pure monetary interest.
Resumo:
Whole-life thinking for engineers working on the built environment has become more important in a fast changing world.Engineers are increasingly concerned with complex systems, in which the parts interact with each other and with the outside world in many ways – the relationships between the parts determine how the system behaves. Systems thinking provides one approach to developing a more robust whole life approach. Systems thinking is a process of understanding how things influence one another within a wider perspective. Complexity, chaos, and risk are endemic in all major projects. New approaches are needed to produce more reliable whole life predictions. Best value, rather than lowest cost can be achieved by using whole-life appraisal as part of the design and delivery strategy.
Resumo:
Stimulation protocols for medical devices should be rationally designed. For episodic migraine with aura we outline model-based design strategies toward preventive and acute therapies using stereotactic cortical neuromodulation. To this end, we regard a localized spreading depression (SD) wave segment as a central element in migraine pathophysiology. To describe nucleation and propagation features of the SD wave segment, we define the new concepts of cortical hot spots and labyrinths, respectively. In particular, we firstly focus exclusively on curvature-induced dynamical properties by studying a generic reaction-diffusion model of SD on the folded cortical surface. This surface is described with increasing level of details, including finally personalized simulations using patient's magnetic resonance imaging (MRI) scanner readings. At this stage, the only relevant factor that can modulate nucleation and propagation paths is the Gaussian curvature, which has the advantage of being rather readily accessible by MRI. We conclude with discussing further anatomical factors, such as areal, laminar, and cellular heterogeneity, that in addition to and in relation to Gaussian curvature determine the generalized concept of cortical hot spots and labyrinths as target structures for neuromodulation. Our numerical simulations suggest that these target structures are like fingerprints, they are individual features of each migraine sufferer. The goal in the future will be to provide individualized neural tissue simulations. These simulations should predict the clinical data and therefore can also serve as a test bed for exploring stereotactic cortical neuromodulation.
Resumo:
Burst suppression in the electroencephalogram (EEG) is a well-described phenomenon that occurs during deep anesthesia, as well as in a variety of congenital and acquired brain insults. Classically it is thought of as spatially synchronous, quasi-periodic bursts of high amplitude EEG separated by low amplitude activity. However, its characterization as a “global brain state” has been challenged by recent results obtained with intracranial electrocortigraphy. Not only does it appear that burst suppression activity is highly asynchronous across cortex, but also that it may occur in isolated regions of circumscribed spatial extent. Here we outline a realistic neural field model for burst suppression by adding a slow process of synaptic resource depletion and recovery, which is able to reproduce qualitatively the empirically observed features during general anesthesia at the whole cortex level. Simulations reveal heterogeneous bursting over the model cortex and complex spatiotemporal dynamics during simulated anesthetic action, and provide forward predictions of neuroimaging signals for subsequent empirical comparisons and more detailed characterization. Because burst suppression corresponds to a dynamical end-point of brain activity, theoretically accounting for its spatiotemporal emergence will vitally contribute to efforts aimed at clarifying whether a common physiological trajectory is induced by the actions of general anesthetic agents. We have taken a first step in this direction by showing that a neural field model can qualitatively match recent experimental data that indicate spatial differentiation of burst suppression activity across cortex.
Resumo:
Cerebral palsy (CP) includes a broad range of disorders, which can result in impairment of posture and movement control. Brain-computer interfaces (BCIs) have been proposed as assistive devices for individuals with CP. Better understanding of the neural processing underlying motor control in affected individuals could lead to more targeted BCI rehabilitation and treatment options. We have explored well-known neural correlates of movement, including event-related desynchronization (ERD), phase synchrony, and a recently-introduced measure of phase dynamics, in participants with CP and healthy control participants. Although present, significantly less ERD and phase locking were found in the group with CP. Additionally, inter-group differences in phase dynamics were also significant. Taken together these findings suggest that users with CP exhibit lower levels of motor cortex activation during motor imagery, as reflected in lower levels of ongoing mu suppression and less functional connectivity. These differences indicate that development of BCIs for individuals with CP may pose additional challenges beyond those faced in providing BCIs to healthy individuals.
Resumo:
In Indian classical music, ragas constitute specific combinations of tonic intervals potentially capable of evoking distinct emotions. A raga composition is typically presented in two modes, namely, alaap and gat. Alaap is the note by note delineation of a raga bound by a slow tempo, but not bound by a rhythmic cycle. Gat on the other hand is rendered at a faster tempo and follows a rhythmic cycle. Our primary objective was to (1) discriminate the emotions experienced across alaap and gat of ragas, (2) investigate the association of tonic intervals, tempo and rhythmic regularity with emotional response. 122 participants rated their experienced emotion across alaap and gat of 12 ragas. Analysis of the emotional responses revealed that (1) ragas elicit distinct emotions across the two presentation modes, and (2) specific tonic intervals are robust predictors of emotional response. Specifically, our results showed that the ‘minor second’ is a direct predictor of negative valence. (3) Tonality determines the emotion experienced for a raga where as rhythmic regularity and tempo modulate levels of arousal. Our findings provide new insights into the emotional response to Indian ragas and the impact of tempo, rhythmic regularity and tonality on it.
Resumo:
One route to understanding the thoughts and feelings of others is by mentally putting one's self in their shoes and seeing the world from their perspective, i.e., by simulation. Simulation is potentially used not only for inferring how others feel, but also for predicting how we ourselves will feel in the future. For instance, one might judge the worth of a future reward by simulating how much it will eventually be enjoyed. In intertemporal choices between smaller immediate and larger delayed rewards, it is observed that as the length of delay increases, delayed rewards lose subjective value; a phenomenon known as temporal discounting. In this article, we develop a theoretical framework for the proposition that simulation mechanisms involved in empathizing with others also underlie intertemporal choices. This framework yields a testable psychological account of temporal discounting based on simulation. Such an account, if experimentally validated, could have important implications for how simulation mechanisms are investigated, and makes predictions about special populations characterized by putative deficits in simulating others.
Resumo:
A number of recent studies have investigated how syntactic and non-syntactic constraints combine to cue memory retrieval during anaphora resolution. In this paper we investigate how syntactic constraints and gender congruence interact to guide memory retrieval during the resolution of subject pronouns. Subject pronouns are always technically ambiguous, and the application of syntactic constraints on their interpretation depends on properties of the antecedent that is to be retrieved. While pronouns can freely corefer with non-quantified referential antecedents, linking a pronoun to a quantified antecedent is only possible in certain syntactic configurations via variable binding. We report the results from a judgment task and three online reading comprehension experiments investigating pronoun resolution with quantified and non-quantified antecedents. Results from both the judgment task and participants' eye movements during reading indicate that comprehenders freely allow pronouns to corefer with non-quantified antecedents, but that retrieval of quantified antecedents is restricted to specific syntactic environments. We interpret our findings as indicating that syntactic constraints constitute highly weighted cues to memory retrieval during anaphora resolution.
Video stimuli reduce object-directed imitation accuracy: a novel two-person motion-tracking approach
Resumo:
Imitation is an important form of social behavior, and research has aimed to discover and explain the neural and kinematic aspects of imitation. However, much of this research has featured single participants imitating in response to pre-recorded video stimuli. This is in spite of findings that show reduced neural activation to video vs. real life movement stimuli, particularly in the motor cortex. We investigated the degree to which video stimuli may affect the imitation process using a novel motion tracking paradigm with high spatial and temporal resolution. We recorded 14 positions on the hands, arms, and heads of two individuals in an imitation experiment. One individual freely moved within given parameters (moving balls across a series of pegs) and a second participant imitated. This task was performed with either simple (one ball) or complex (three balls) movement difficulty, and either face-to-face or via a live video projection. After an exploratory analysis, three dependent variables were chosen for examination: 3D grip position, joint angles in the arm, and grip aperture. A cross-correlation and multivariate analysis revealed that object-directed imitation task accuracy (as represented by grip position) was reduced in video compared to face-to-face feedback, and in complex compared to simple difficulty. This was most prevalent in the left-right and forward-back motions, relevant to the imitator sitting face-to-face with the actor or with a live projected video of the same actor. The results suggest that for tasks which require object-directed imitation, video stimuli may not be an ecologically valid way to present task materials. However, no similar effects were found in the joint angle and grip aperture variables, suggesting that there are limits to the influence of video stimuli on imitation. The implications of these results are discussed with regards to previous findings, and with suggestions for future experimentation.
Resumo:
A basic data requirement of a river flood inundation model is a Digital Terrain Model (DTM) of the reach being studied. The scale at which modeling is required determines the accuracy required of the DTM. For modeling floods in urban areas, a high resolution DTM such as that produced by airborne LiDAR (Light Detection And Ranging) is most useful, and large parts of many developed countries have now been mapped using LiDAR. In remoter areas, it is possible to model flooding on a larger scale using a lower resolution DTM, and in the near future the DTM of choice is likely to be that derived from the TanDEM-X Digital Elevation Model (DEM). A variable-resolution global DTM obtained by combining existing high and low resolution data sets would be useful for modeling flood water dynamics globally, at high resolution wherever possible and at lower resolution over larger rivers in remote areas. A further important data resource used in flood modeling is the flood extent, commonly derived from Synthetic Aperture Radar (SAR) images. Flood extents become more useful if they are intersected with the DTM, when water level observations (WLOs) at the flood boundary can be estimated at various points along the river reach. To illustrate the utility of such a global DTM, two examples of recent research involving WLOs at opposite ends of the spatial scale are discussed. The first requires high resolution spatial data, and involves the assimilation of WLOs from a real sequence of high resolution SAR images into a flood model to update the model state with observations over time, and to estimate river discharge and model parameters, including river bathymetry and friction. The results indicate the feasibility of such an Earth Observation-based flood forecasting system. The second example is at a larger scale, and uses SAR-derived WLOs to improve the lower-resolution TanDEM-X DEM in the area covered by the flood extents. The resulting reduction in random height error is significant.