135 resultados para Forecasting, teleriscaldamento, metodi previsionali, Weka


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first ECMWF Seminar in 1975 (ECMWF, 1975) considered the scientific foundation of medium range weather forecasts. It may be of interest as a part of this lecture, to review some of the ideas and opinions expressed during this seminar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As laid out in its convention there are 8 different objectives for ECMWF. One of the major objectives will consist of the preparation, on a regular basis, of the data necessary for the preparation of medium-range weather forecasts. The interpretation of this item is that the Centre will make forecasts once a day for a prediction period of up to 10 days. It is also evident that the Centre should not carry out any real weather forecasting but merely disseminate to the member countries the basic forecasting parameters with an appropriate resolution in space and time. It follows from this that the forecasting system at the Centre must from the operational point of view be functionally integrated with the Weather Services of the Member Countries. The operational interface between ECMWF and the Member Countries must be properly specified in order to get a reasonable flexibility for both systems. The problem of making numerical atmospheric predictions for periods beyond 4-5 days differs substantially from 2-3 days forecasting. From the physical point we can define a medium range forecast as a forecast where the initial disturbances have lost their individual structure. However we are still interested to predict the atmosphere in a similar way as in short range forecasting which means that the model must be able to predict the dissipation and decay of the initial phenomena and the creation of new ones. With this definition, medium range forecasting is indeed very difficult and generally regarded as more difficult than extended forecasts, where we usually only predict time and space mean values. The predictability of atmospheric flow has been extensively studied during the last years in theoretical investigations and by numerical experiments. As has been discussed elsewhere in this publication (see pp 338 and 431) a 10-day forecast is apparently on the fringe of predictability.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Normal Quantile Transform (NQT) has been used in many hydrological and meteorological applications in order to make the Cumulated Distribution Function (CDF) of the observed, simulated and forecast river discharge, water level or precipitation data Gaussian. It is also the heart of the meta-Gaussian model for assessing the total predictive uncertainty of the Hydrological Uncertainty Processor (HUP) developed by Krzysztofowicz. In the field of geo-statistics this transformation is better known as the Normal-Score Transform. In this paper some possible problems caused by small sample sizes when applying the NQT in flood forecasting systems will be discussed and a novel way to solve the problem will be outlined by combining extreme value analysis and non-parametric regression methods. The method will be illustrated by examples of hydrological stream-flow forecasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is widely accepted that some of the most accurate Value-at-Risk (VaR) estimates are based on an appropriately specified GARCH process. But when the forecast horizon is greater than the frequency of the GARCH model, such predictions have typically required time-consuming simulations of the aggregated returns distributions. This paper shows that fast, quasi-analytic GARCH VaR calculations can be based on new formulae for the first four moments of aggregated GARCH returns. Our extensive empirical study compares the Cornish–Fisher expansion with the Johnson SU distribution for fitting distributions to analytic moments of normal and Student t, symmetric and asymmetric (GJR) GARCH processes to returns data on different financial assets, for the purpose of deriving accurate GARCH VaR forecasts over multiple horizons and significance levels.