65 resultados para Filtratge de Kalman
Resumo:
A smoother introduced earlier by van Leeuwen and Evensen is applied to a problem in which real obser vations are used in an area with strongly nonlinear dynamics. The derivation is new , but it resembles an earlier derivation by van Leeuwen and Evensen. Again a Bayesian view is taken in which the prior probability density of the model and the probability density of the obser vations are combined to for m a posterior density . The mean and the covariance of this density give the variance-minimizing model evolution and its errors. The assumption is made that the prior probability density is a Gaussian, leading to a linear update equation. Critical evaluation shows when the assumption is justified. This also sheds light on why Kalman filters, in which the same ap- proximation is made, work for nonlinear models. By reference to the derivation, the impact of model and obser vational biases on the equations is discussed, and it is shown that Bayes’ s for mulation can still be used. A practical advantage of the ensemble smoother is that no adjoint equations have to be integrated and that error estimates are easily obtained. The present application shows that for process studies a smoother will give superior results compared to a filter , not only owing to the smooth transitions at obser vation points, but also because the origin of features can be followed back in time. Also its preference over a strong-constraint method is highlighted. Further more, it is argued that the proposed smoother is more efficient than gradient descent methods or than the representer method when error estimates are taken into account
Resumo:
We present a novel algorithm for concurrent model state and parameter estimation in nonlinear dynamical systems. The new scheme uses ideas from three dimensional variational data assimilation (3D-Var) and the extended Kalman filter (EKF) together with the technique of state augmentation to estimate uncertain model parameters alongside the model state variables in a sequential filtering system. The method is relatively simple to implement and computationally inexpensive to run for large systems with relatively few parameters. We demonstrate the efficacy of the method via a series of identical twin experiments with three simple dynamical system models. The scheme is able to recover the parameter values to a good level of accuracy, even when observational data are noisy. We expect this new technique to be easily transferable to much larger models.
Resumo:
Filter degeneracy is the main obstacle for the implementation of particle filter in non-linear high-dimensional models. A new scheme, the implicit equal-weights particle filter (IEWPF), is introduced. In this scheme samples are drawn implicitly from proposal densities with a different covariance for each particle, such that all particle weights are equal by construction. We test and explore the properties of the new scheme using a 1,000-dimensional simple linear model, and the 1,000-dimensional non-linear Lorenz96 model, and compare the performance of the scheme to a Local Ensemble Kalman Filter. The experiments show that the new scheme can easily be implemented in high-dimensional systems and is never degenerate, with good convergence properties in both systems.
Resumo:
• Premise of the study: Microsatellite markers were developed using hoop-petticoat daffodils ( Narcissus sect. Bulbocodii ; Amaryllidaceae) to aid in the taxonomic revision of the section, and further to evaluate their broad applicability for daffodil cultivar identification. • Methods and Results: Three hundred fifty-one primer pairs were developed using a commercial service. Nineteen polymorphic and repeatable markers were developed by screening 67 of these primer pairs. Of these, 11 chosen markers were used to screen 317 samples; the number of alleles per locus ranged from four to 21, and the observed heterozygosity ranged from 0.101 to 0.297. There were null genotypes in some samples for six of the markers. All the microsatellites were transferable to other Narcissus sections. • Conclusions: The results indicate that these new markers have sufficient potential variation to be used for taxonomic revision of the genus and to distinguish many commercial daffodil cultivars.
Resumo:
Existing theoretical models of house prices and credit rely on continuous rationality of consumers, an assumption that has been frequently questioned in recent years. Meanwhile, empirical investigations of the relationship between prices and credit are often based on national-level data, which is then tested for structural breaks and asymmetric responses, usually with subsamples. Earlier author argues that local markets are structurally different from one another and so the coefficients of any estimated housing market model should vary from region to region. We investigate differences in the price–credit relationship for 12 regions of the UK. Markov-switching is introduced to capture asymmetric market behaviours and turning points. Results show that credit abundance had a large impact on house prices in Greater London and nearby regions alongside a strong positive feedback effect from past house price movements. This impact is even larger in Greater London and the South East of England when house prices are falling, which are the only instances where the credit effect is more prominent than the positive feedback effect. A strong positive feedback effect from past lending activity is also present in the loan dynamics. Furthermore, bubble probabilities extracted using a discrete Kalman filter neatly capture market turning points.