65 resultados para Fertilization of plants


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aims: We investigated the role of arbuscular mycorrhizal fungi (AMF) and heterotrophic soil microbes in the uptake of phosphorus (P) by Trifolium subterraneum from a pulse. Methods: Plants were grown in sterilised pasture field soil with a realistic level of available P. There were five treatments, two of which involved AMF: 1) unsterilised field soil containing a community of AMF and heterotrophic organisms; 2) Scutellospora calospora inoculum (AMF); 3) microbes added as filtrate from the field soil; 4) microbes added as filtrate from the S. calospora inoculum; 5) no additions, i.e. sterilised field soil. After 11 weeks, plants were harvested: 1 day before (day 0), 1 day after (day 2) and 7 days after (day 8) the pulse of P (10 mg kg−1). Results: There was no difference among treatments in shoot and root dry weight, which increased from day 0 to day 8. At day 0, shoots and roots of plants in the colonised treatments had higher P and lower Mn concentrations. After the pulse, the rate of increase in P concentration in the shoots was slower for the colonised plants, and the root Mn concentration declined by up to 50 % by day 2. Conclusions: Plants colonised by AMF had a lower rate of increase in shoot P concentration after a pulse, perhaps because intraradical hyphae accumulated P and thus reduced its transport to the shoots.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Enterohaemorrhagic Escherichia coli (EHEC) are a group of food and contact-borne pathogens responsible for haemorrhagic colitis. The bacteria can be transmitted by contaminated meat, but importantly, also by plants. The bacteria can use plants as an alternative host, where they associate with both the leaves and the roots. Colonisation in the rhizosphere of plants is thought to be the main habitat for colonisation. Four different plant species, commonly associated with EHEC outbreaks, were infected with EHEC O157:H7 isolates Sakai and TUV 93-0 over ten days to assess the colonisation potential of the bacteria in both the phyllosphere and rhizosphere of plants. The rhizosphere was found to sustain a higher population level of bacteria over time in comparison to the phyllosphere, yet both strains were unable to utilize root exudates for growth. Global gene expression changes of EHEC O157:H7 strain Sakai were measured in response to plant extracts such as leaf lysates, root exudates and leaf cell wall polysaccharides from spinach cultivar Amazon and lettuce cultivar Salinas. Microarrays analysis showed a significant change in expression of 17 % of genes on exposure to leaf lysates of spinach. A more specific response was seen to spinach leaf cell wall polysaccharides with only a 1.5 % change. In contrast, when exposed to lettuce leaf cell wall polysaccharides a higher change of 4.8 % was seen. Genes that were differentially expressed belonged to multiple functional groups, including metabolism, indicating the utilization of plant-specific polysaccharides. Several areas of further investigation have been determined from this project, including the importance of culturing bacterial strains at a relevant temperature, the proposed lack of the type III secretion system in plant colonization by EHEC O157:H7 and the utilization of plant components for growth and persistence in the plant environment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Global food security, particularly crop fertilization and yield production, is threatened by heat waves that are projected to increase in frequency and magnitude with climate change. Effects of heat stress on the fertilization of insect-pollinated plants are not well understood, but experiments conducted primarily in self-pollinated crops, such as wheat, show that transfer of fertile pollen may recover yield following stress. We hypothesized that in the partially pollinator-dependent crop, faba bean (Vicia faba L.), insect pollination would elicit similar yield recovery following heat stress. We exposed potted faba bean plants to heat stress for 5 days during floral development and anthesis. Temperature treatments were representative of heat waves projected in the UK for the period 2021-2050 and onwards. Following temperature treatments, plants were distributed in flight cages and either pollinated by domesticated Bombus terrestris colonies or received no insect pollination. Yield loss due to heat stress at 30°C was greater in plants excluded from pollinators (15%) compared to those with bumblebee pollination (2.5%). Thus, the pollinator dependency of faba bean yield was 16% at control temperatures (18 to 26°C) and extreme stress (34°C), but was 53% following intermediate heat stress at 30°C. These findings provide the first evidence that the pollinator dependency of crops can be modified by heat stress, and suggest that insect pollination may become more important in crop production as the probability of heat waves increases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Horticulture is “the first of all the arts and sciences”. This definition indicates both the breadth and depth of the discipline and its early inception as mankind changed from being hunter-gatherers to cultivators. Intensive crop production which is a form of horticulture preceded more extensive agricultural practices. From that time onwards the intricate involvement of horticulture in man’s life has become very apparent by its multitude of applications and the interests of those involved. These extend from the provision of foodstuffs and nutritional benefits through pharmaceuticals to aspects of rest and relaxation onto encouraging physical and mental well-being. Horticulture is therefore, a discipline with many components and as such that it can mean different things in the varying context of its use. This chapter introduces the meanings of horticulture as expressed by the authors who have contributed to this Trilogy of Books. They have analysed in considerable depth “Horticulture” as expressed in its facets of production, environment and society. Horticulture has impact and expression in each of these fields of human activity. This chapter also sets Horticulture into the wider context of the world of plants and their intensive cultivation both in their use by mankind and in the natural world. The aim is to demonstrate the depth and breadth of human activity associated with this discipline for it stretches from crop production, through landscape design and maintenance and into aspects of society and its expression in the arts and humanities. Horticulture touches almost every aspect of human activity. Increasingly Horticulture has significant importance in contributing towards the mitigation of the major problems which now face life on Earth such as:- climate change, food security, the loss of natural biodiversity, pollution, resource erosion and over-population. Indeed despite or perhaps because of its antiquity and therefore its strong connection between science, technology and practice horticulture can offer solutions that might allude other disciplines.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Horticulture may be defined as the intensive cultivation and harvesting of plants for financial, environmental and social profit. Evidence for the occurrence of climate change more generally and reasons why this process is happening with such rapidity are discussed. These changes are then considered in terms of the effects which might alter the options for worldwide intensive horticultural cultivation of plants and its interactions with other organisms. Potentially changing climates will have considerable impact upon horticultural processes and productivity across the globe . Climate change will alter the growth patterns and capabilities for flowering and fruiting of many perennial and annual horticultural plants. In some regions perennial fruit crops are likely to experience substantial difficulties because of altered seasonal conditions affecting dormancy, acclimation and subsequent flowering and fruiting. Elsewhere these crops may benefit from the effects of climate change as a result of reduced cold damage and increased length of the growing season. There will be considerable effects for aerial and edaphic microbes invertebrate and vertebrate animals which have benign and pathogenic interactions with horticultural plants. Microbial activity and as a consequence soil fertility may alter. New pests and pathogens may become prevalent and damaging in areas where the climate previously excluded their activity. Vital resources such as water and nutrients may become scarce in some regions reducing opportunities for growing horticultural crops. Wind and windiness are significant factors governing the success of horticultural plants and the scale of their impacts may change as climate alters. Damaging winds could limit crop growing in areas where previously it flourished. Forms of macro- and micro-landscaping will change as the spectrum of plants which can be cultivated alters and the availability of resources and their cost changes driven by scarcities brought about by climate change. The horticultural economy of India as it may be affected by climate change is described as an individual example in a detailed study.