79 resultados para Fertilization in vitro, Human
Resumo:
Carotenoids are a class of natural pigments familiar to all through the orange-red to yellow colors of many fruits, vegetables, and flowers, as well as for the provitamin A activity that some of them possess. A body of scientific evidence suggests that carotenoids may scavenge and deactivate free radicals, acting thereby as antioxidants both in food systems (in vitro) and in the human organism (in vivo). Overall, epidemiological evidence links higher carotenoid intakes and tissue concentrations with reduced cancer and cardiovascular disease risk. However, research has also shown that the antioxidant activity of carotenoids may shift to a prooxidant character depending mainly on the biological environment in which they act. A summary of the antioxidant potential of natural carotenoids both in oil model systems and in vivo is presented in this article.
Resumo:
Aims: This study was carried out to evaluate in vitro the fermentation properties and the potential prebiotic activity of Agave-fructans extracted from Agave tequilana (Predilife). Methods and Results: Five different commercial prebiotics were compared using 24-h pH-controlled anaerobic batch cultures inoculated with human faecal slurries. Measurement of prebiotic efficacy was obtained by comparing bacterial changes, and the production of short-chain fatty acids (SCFA) was also determined. Effects upon major groups of the microbiota were monitored over 24 h incubations by fluorescence in situ hybridization. SCFA were measured by HPLC. Fermentation of the Agave fructans (Predilife) resulted in a large increase in numbers of bifidobacteria and lactobacilli. Conclusions: Under the in vitro conditions used, this study has shown the differential impact of Predilife on the microbial ecology of the human gut. Significance and Impact of the Study: This is the first study reporting of a potential prebiotic mode of activity for Agave fructans investigated which significantly increased populations of bifidobacteria and lactobacilli compared to cellulose used as a control.
Resumo:
Resistant starch type 2 (RS2) and type 3 (RS3) containing preparations were digested using a batch (a) and a dynamic in vitro model (b). Furthermore, in vivo obtained indigestible fractions from ileostomy patients were used (c). Subsequently these samples were fermented with human feces with a batch and a dynamic in vitro method. The fermentation supernatants were used to treat CAC02 cells. Cytotoxicity, anti-genotoxicity against hydrogen peroxide (comet assay) and the effect on barrier function measured by trans-epithelial electrical resistance were determine. Dynamically fermented samples led to high cytotoxic activity, probably due to additional compounds added during in vitro fermentation. As a consequence only batch fermented samples were investigated further. Batch fermentation of RS resulted in an anti-genotoxic activity ranging from 9-30% decrease in DNA damage for all the samples, except for RS2-b. It is assumed that the changes in RS2 structures due to dynamic digestion resulted in a different fermentation profile not leading to any anti-genotoxic effect. Additionally, in vitro batch fermentation of RS caused an improvement in integrity across the intestinal barrier by approximately 22% for all the samples. We have demonstrated that batch in vitro fermentation of RS2 and RS3 preparations differently pre-digested are capable of inhibiting the initiation and promotion stage in colon carcinogenesis in vitro.
Resumo:
Epidemiological studies and healthy eating guidelines suggest a positive correlation between ingestion of whole grain cereal and food rich in fibre with protection from chronic diseases. The prebiotic potential of whole grains may be related, however, little is known about the microbiota modulatory capability of oat grain or the impact processing has on this ability. In this study the fermentation profile of whole grain oat flakes, processed to produce two different sized flakes (small and large), by human faecal microbiota was investigated in vitro. Simulated digestion and subsequent fermentation by gut bacteria was investigated using pH controlled faecal batch cultures inoculated with human faecal slurry. The different sized oat flakes, Oat 23’s (0.53–0.63 mm) and Oat 25’s/26’s (0.85–1.0 mm) were compared to oligofructose, a confirmed prebiotic, and cellulose, a poorly fermented carbohydrate. Bacterial enumeration was carried out using the culture independent technique, fluorescent in situ hybridisation, and short chain fatty acid (SCFA) production monitored by gas chromatography. Significant changes in total bacterial populations were observed after 24 h incubation for all substrates except Oat 23’s and cellulose. Oats 23’s fermentation resulted in a significant increase in the Bacteroides–Prevotella group. Oligofructose and Oats 25’s/26’s produced significant increases in Bifidobacterium in the latter stages of fermentation while numbers declined for Oats 23’s between 5 h and 24 h. This is possibly due to the smaller surface area of the larger flakes inhibiting the simulated digestion, which may have resulted in increased levels of resistant starch (Bifidobacterium are known to ferment this dietary fibre). Fermentation of Oat 25’s/26’s resulted in a propionate rich SCFA profile and a significant increase in butyrate, which have both been linked to benefiting host health. The smaller sized oats did not produce a significant increase in butyrate concentration. This study shows for the first time the impact of oat grain on the microbial ecology of the human gut and its potential to beneficially modulate the gut microbiota through increasing Bifidobacterium population.
Resumo:
Single-stage continuous fermentation systems were employed to examine the effects of GanedenBC30 supplementation on the human gastrointestinal microbiota in relation to pathogen challenge in vitro. Denaturing gradient gel electrophoresis analysis demonstrated that GanedenBC30 supplementation modified the microbial profiles in the fermentation systems compared with controls, with profiles clustering according to treatment. Overall, GanedenBC30 supplementation did not elicit major changes in bacterial population counts in vitro, although notably higher Bcoa191 counts were seen following probiotic supplementation (compared to the controls). Pathogen challenge did not elicit significant modification of the microbial counts in vitro, although notably higher Clit135 counts were seen in the control system post-Clostridium difficile challenge than in the corresponding GanedenBC30-supplemented systems. Sporulation appears to be associated with the anti-microbial activity of GanedenBC30, suggesting that a bi-modal lifecycle of GanedenBC30 in vivo may lead to anti-microbial activity in distal regions of the gastrointestinal tract.
Resumo:
There is growing interest in the use of inulins as substrates for the selective growth of beneficial gut bacteria such as bifidobacteria and lactobacilli because recent studies have established that their prebiotic effect is linked to several health benefits. In the present study, the impact of a very-long-chain inulin (VLCI), derived from globe artichoke (Cynara scolymus), on the human intestinal microbiota compared with maltodextrin was determined. A double-blind, cross-over study was carried out in thirty-two healthy adults who were randomised into two groups and consumed 10 g/d of either VLCI or maltodextrin, for two 3-week study periods, separated by a 3-week washout period. Numbers of faecal bifidobacteria and lactobacilli were significantly higher upon VLCI ingestion compared with the placebo. Additionally, levels of Atopobium group significantly increased, while Bacteroides–Prevotella numbers were significantly reduced. No significant changes in faecal SCFA concentrations were observed. There were no adverse gastrointestinal symptoms apart from a significant increase in mild and moderate bloating upon VLCI ingestion. These observations were also confirmed by in vitro gas production measurements. In conclusion, daily consumption of VLCI extracted from globe artichoke exerted a pronounced prebiotic effect on the human faecal microbiota composition and was well tolerated by all volunteers.
Resumo:
Scope: Cocoa, especially the water-insoluble cocoa fraction (WICF), is a rich source of polyphenols. In this study, sequential in vitro digestion of the WICF with gastrointestinal enzymes as well as its bacterial fermentation in a human colonic model system were carried out to investigate bioaccessibility and biotransformation of WICF polyphenols, respectively. Methods and results: The yield of each enzymatic digestion step and the total antioxidant capacity (TAC) were measured and solubilized phenols were characterized by MS/MS. Fermentation of WICF and the effect on the gut microbiota, SCFA production and metabolism of polyphenols was analyzed. In vitro digestion solubilized 38.6% of WICF with pronase and Viscozyme L treatments releasing 51% of the total phenols from the insoluble material. This release of phenols does not determine a reduction in the total antioxidant capacity of the digestion-resistant material. In the colonic model WICF significantly increased of bifidobacteria and lactobacilli as well as butyrate production. Flavanols were converted into phenolic acids by the microbiota following a concentration gradient resulting in high concentrations of 3-hydroxyphenylpropionic acid (3-HPP) in the last gut compartment. Conclusion: Data showed that WICF may exert antioxidant action through the gastrointestinal tract despite its polyphenols being still bound to macromolecules and having prebiotic activity.
Resumo:
Population studies have shown a positive correlation between diets rich in whole grains and a reduced risk of developing metabolic diseases, like diabetes, cardiovascular disease, and certain cancers. However, little is known about the mechanisms of action, particularly the impact different fermentable components of whole grains have on the human intestinal microbiota. The modulation of microbial populations by whole grain wheat flakes and the effects of toasting on digestion and subsequent fermentation profile were evaluated. Raw, partially toasted, and toasted wheat flakes were digested using simulated gastric and small intestinal conditions and then fermented using 24-hour, pH-controlled, anaerobic batch cultures inoculated with human feces. Major bacterial groups and production of short-chain fatty acids were compared with those for the prebiotic oligofructose and weakly fermented cellulose. Within treatments, a significant increase (P<.05) in bifidobacteria numbers was observed upon fermentation of all test carbohydrates, with the exception of cellulose. Toasting appeared to have an effect on growth of lactobacilli as only fermentation of raw wheat flakes resulted in a significant increase in levels of this group.
Resumo:
There is considerable interest in the strain specificity of immune modulation by probiotics. The present study compared the immunomodulatory properties of six probiotic strains of different species and two genera in a human peripheral blood mononuclear cell (PBMC) model in vitro. Live cells of lactobacilli (Lactobacillus casei Shirota, L. rhamnosus GG, L. plantarum NCIMB 8826 and L. reuteri NCIMB 11951) and bifidobacteria (Bifidobacterium longum SP 07/3 and B. bifidum MF 20/5) were individually incubated with PBMC from seven healthy subjects for 24 h. Probiotic strains increased the proportion of CD69+ on lymphocytes, T cells, T cell subsets and natural killer (NK) cells, and increased the proportion of CD25+, mainly on lymphocytes and NK cells. The effects on activation marker expression did not appear to be strain specific. NK cell activity was significantly increased by all six strains, without any significant difference between strains. Probiotic strains increased production of IL-1β, IL-6, IL-10, TNF-α, granulocyte-macrophage colony-stimulating factor and macrophage inflammatory protein 1α to different extents, but had no effect on the production of IL-2, IL-4, IL-5 or TNF-β. The cytokines that showed strain-specific modulation included IL-10, interferon-γ, TNF-α, IL-12p70, IL-6 and monocyte chemotactic protein-1. The Lactobacillus strains tended to promote T helper 1 cytokines, whereas bifidobacterial strains tended to produce a more anti-inflammatory profile. The results suggest that there was limited evidence of strain-specific effects of probiotics with respect to T cell and NK cell activation or NK cell activity, whereas production of some cytokines was differentially influenced by probiotic strains.
Resumo:
Incubation with 5-n-alkylresorcinols (chain lengths C15:0, C17:0, C19:0, C21:0, and C23:0) increased the self-protection capacity of HT29 human colon cancer cells against DNA damage induced by hydrogen peroxide and genotoxic fecal water samples using comet assay (single-cell gel electrophoresis assay). The alkylresorcinols did not exert potent antioxidant activity in the FRAP (ferric reduction ability of plasma) and DPPH (2,2-diphenyl-1-picrylhydrazyl) radical assays. However they were able to significantly inhibit copper-mediated oxidation of human LDL (low-density lipoprotein) in vitro, and pentadecylresorcinol at 25 micromol/L increased lag time by 65 min. The results show that alkylresorcinols have antigenotoxic and antioxidant activity under in vitro conditions.
Resumo:
Evidence from in vivo and in vitro studies suggests that the consumption of pro- and prebiotics may inhibit colon carcinogenesis; however, the mechanisms involved have, thus far, proved elusive. There are some indications from animal studies that the effects are being exerted during the promotion stage of carcinogenesis. One feature of the promotion stage of colorectal cancer is the disruption of tight junctions, leading to a loss of integrity across the intestinal barrier. We have used the Caco-2 human adenocarcinoma cell line as a model for the intestinal epithelia. Trans-epithelial electrical resistance measurements indicate Caco-2 monolayer integrity, and we recorded changes to this integrity following exposure to the fermentation products of selected probiotics and prebiotics, in the form of nondigestible oligosaccharides (NDOs). Our results indicate that NDOs themselves exert varying, but generally minor, effects upon the strength of the tight junctions, whereas the fermentation products of probiotics and NDOs tend to raise tight junction integrity above that of the controls. This effect was bacterial species and oligosaccharide specific. Bifidobacterium Bb 12 was particularly effective, as were the fermentation products of Raftiline and Raftilose. We further investigated the ability of Raftilose fermentations to protect against the negative effects of deoxycholic acid (DCA) upon tight junction integrity. We found protection to be species dependent and dependent upon the presence of the fermentation products in the media at the same time as or after exposure to the DCA. Results suggest that the Raftilose fermentation products may prevent disruption of the intestinal epithelial barrier function during damage by tumor promoters.
Resumo:
The prebiotic effect of oligosaccharides recovered and purified from caprine whey, was evaluated by in vitro fermentation under anaerobic conditions using batch cultures at 37ºC with human faeces. Effects on key gut bacterial groups were monitored over 24h by fluorescence in situ hybridisation (FISH), which was used to determine a quantitative prebiotic index score. Production of short-chain fatty acids (SCFAs) as fermentation end products was analysed by high-performance liquid chromatography (HPLC). Growth of Bifidobacterium spp was significantly higher (p ≥ 0.05) with the purified oligosaccharides compared to the negative control. Lactic and propionic acids were the main SCFAs produced. Antimicrobial activity of the oligosaccharides was also tested, revealing no inhibition though a decrease in Staphylococcus aureus and Escherichia coli growth. These findings indicate that naturally extracted oligosaccharides from caprine whey could be used as new and valuable source of prebiotics.
Resumo:
Summary Background and purpose: Phytocannabinoids in Cannabis sativa have diverse pharmacological targets extending beyond cannabinoid receptors and several exert notable anticonvulsant effects. For the first time, we investigated the anticonvulsant profile of the phytocannabinoid cannabidivarin (CBDV) in vitro and in in vivo seizure models. Experimental approach: The effect of CBDV (1-100μM) on epileptiform local field potentials (LFPs) induced in rat hippocampal brain slices by 4-AP application or Mg2+-free conditions was assessed by in vitro multi-electrode array recordings. Additionally, the anticonvulsant profile of CBDV (50-200 mg kg-1) in vivo was investigated in four rodent seizure models: maximal electroshock (mES) and audiogenic seizures in mice, and pentylenetetrazole (PTZ) and pilocarpine-induced seizures in rat. CBDV effects in combination with commonly-used antiepileptic drugs were investigated in rat seizures. Finally, the motor side effect profile of CBDV was investigated using static beam and gripstrength assays. Key results: CDBV significantly attenuated status epilepticus-like epileptiform LFPs induced by 4-AP and Mg2+-free conditions. CBDV had significant anticonvulsant effects in mES (≥100 mg kg-1), audiogenic (≥50 mg kg-1) and PTZ-induced seizures (≥100 mg kg-1). CBDV alone had no effect against pilocarpine-induced seizures, but significantly attenuated these seizures when administered with valproate or phenobarbital at 200 mg kg-1 CBDV. CBDV had no effect on motor function. Conclusions and Implications: These results indicate that CBDV is an effective anticonvulsant across a broad range of seizure models, does not significantly affect normal motor function and therefore merits further investigation in chronic epilepsy models to justify human trials.
Resumo:
The etiology of colorectal cancer (CRC), a common cause of cancer-related mortality globally, has strong associations with diet. There is considerable epidemiological evidence that fruits and vegetables are associated with reduced risk of CRC. This paper reviews the extensive evidence, both from in vitro studies and animal models, that components of berry fruits can modulate biomarkers of DNA damage and that these effects may be potentially chemoprotective, given the likely role that oxidative damage plays in mutation rate and cancer risk. Human intervention trials with berries are generally consistent in indicating a capacity to significantly decrease oxidative damage to DNA, but represent limited evidence for anticarcinogenicity, relying as they do on surrogate risk markers. To understand the effects of berry consumption on colorectal cancer risk, future studies will need to be well controlled, with defined berry extracts, using suitable and clinically relevant end points and considering the importance of the gut microbiota.
Resumo:
Ancestral human populations had diets containing more indigestible plant material than present-day diets in industrialized countries. One hypothesis for the rise in prevalence of obesity is that physiological mechanisms for controlling appetite evolved to match a diet with plant fiber content higher than that of present-day diets. We investigated how diet affects gut microbiota and colon cells by comparing human microbial communities with those from a primate that has an extreme plant-based diet, namely, the gelada baboon, which is a grazer. The effects of potato (high starch) versus grass (high lignin and cellulose) diets on human-derived versus gelada-derived fecal communities were compared in vitro. We especially focused on the production of short-chain fatty acids, which are hypothesized to be key metabolites influencing appetite regulation pathways. The results confirmed that diet has a major effect on bacterial numbers, short-chain fatty acid production, and the release of hormones involved in appetite suppression. The potato diet yielded greater production of short-chain fatty acids and hormone release than the grass diet, even in the gelada cultures, which we had expected should be better adapted to the grass diet. The strong effects of diet on hormone release could not be explained, however, solely by short-chain fatty acid concentrations. Nuclear magnetic resonance spectroscopy found changes in additional metabolites, including betaine and isoleucine, that might play key roles in inhibiting and stimulating appetite suppression pathways. Our study results indicate that a broader array of metabolites might be involved in triggering gut hormone release in humans than previously thought. IMPORTANCE: One theory for rising levels of obesity in western populations is that the body's mechanisms for controlling appetite evolved to match ancestral diets with more low-energy plant foods. We investigated this idea by comparing the effects of diet on appetite suppression pathways via the use of gut bacterial communities from humans and gelada baboons, which are modern-day primates with an extreme diet of low-energy plant food, namely, grass. We found that diet does play a major role in affecting gut bacteria and the production of a hormone that suppresses appetite but not in the direction predicted by the ancestral diet hypothesis. Also, bacterial products were correlated with hormone release that were different from those normally thought to play this role. By comparing microbiota and diets outside the natural range for modern humans, we found a relationship between diet and appetite pathways that was more complex than previously hypothesized on the basis of more-controlled studies of the effects of single compounds.