75 resultados para Environmental monitoring Remote sensing
Resumo:
Remote sensing from space-borne platforms is often seen as an appealing method of monitoring components of the hydrological cycle, including river discharge, due to its spatial coverage. However, data from these platforms is often less than ideal because the geophysical properties of interest are rarely measured directly and the measurements that are taken can be subject to significant errors. This study assimilated water levels derived from a TerraSAR-X synthetic aperture radar image and digital aerial photography with simulations from a two dimensional hydraulic model to estimate discharge, inundation extent, depths and velocities at the confluence of the rivers Severn and Avon, UK. An ensemble Kalman filter was used to assimilate spot heights water levels derived by intersecting shorelines from the imagery with a digital elevation model. Discharge was estimated from the ensemble of simulations using state augmentation and then compared with gauge data. Assimilating the real data reduced the error between analyzed mean water levels and levels from three gauging stations to less than 0.3 m, which is less than typically found in post event water marks data from the field at these scales. Measurement bias was evident, but the method still provided a means of improving estimates of discharge for high flows where gauge data are unavailable or of poor quality. Posterior estimates of discharge had standard deviations between 63.3 m3s-1 and 52.7 m3s-1, which were below 15% of the gauged flows along the reach. Therefore, assuming a roughness uncertainty of 0.03-0.05 and no model structural errors discharge could be estimated by the EnKF with accuracy similar to that arguably expected from gauging stations during flood events. Quality control prior to assimilation, where measurements were rejected for being in areas of high topographic slope or close to tall vegetation and trees, was found to be essential. The study demonstrates the potential, but also the significant limitations of currently available imagery to reduce discharge uncertainty in un-gauged or poorly gauged basins when combined with model simulations in a data assimilation framework.
Resumo:
1.There is concern over the possibility of unwanted environmental change following transgene movement from genetically modified (GM) rapeseed Brassica napus to its wild and weedy relatives. 2. The aim of this research was to develop a remote sensing-assisted methodology to help quantify gene flow from crops to their wild relatives over wide areas. Emphasis was placed on locating sites of sympatry, where the frequency of gene flow is likely to be highest, and on measuring the size of rapeseed fields to allow spatially explicit modelling of wind-mediated pollen-dispersal patterns. 3. Remote sensing was used as a tool to locate rapeseed fields, and a variety of image-processing techniques was adopted to facilitate the compilation of a spatially explicit profile of sympatry between the crop and Brassica rapa. 4. Classified satellite images containing rapeseed fields were first used to infer the spatial relationship between donor rapeseed fields and recipient riverside B. rapa populations. Such images also have utility for improving the efficiency of ground surveys by identifying probable sites of sympatry. The same data were then also used for the calculation of mean field size. 5. This paper forms a companion paper to Wilkinson et al. (2003), in which these elements were combined to produce a spatially explicit profile of hybrid formation over the UK. The current paper demonstrates the value of remote sensing and image processing for large-scale studies of gene flow, and describes a generic method that could be applied to a variety of crops in many countries. 6.Synthesis and applications. The decision to approve or prevent the release of a GM cultivar is made at a national rather than regional level. It is highly desirable that data relating to the decision-making process are collected at the same scale, rather than relying on extrapolation from smaller experiments designed at the plot, field or even regional scale. It would be extremely difficult and labour intensive to attempt to carry out such large-scale investigations without the use of remote-sensing technology. This study used rapeseed in the UK as a model to demonstrate the value of remote sensing in assembling empirical information at a national level.
Resumo:
In the past decade, airborne based LIght Detection And Ranging (LIDAR) has been recognised by both the commercial and public sectors as a reliable and accurate source for land surveying in environmental, engineering and civil applications. Commonly, the first task to investigate LIDAR point clouds is to separate ground and object points. Skewness Balancing has been proven to be an efficient non-parametric unsupervised classification algorithm to address this challenge. Initially developed for moderate terrain, this algorithm needs to be adapted to handle sloped terrain. This paper addresses the difficulty of object and ground point separation in LIDAR data in hilly terrain. A case study on a diverse LIDAR data set in terms of data provider, resolution and LIDAR echo has been carried out. Several sites in urban and rural areas with man-made structure and vegetation in moderate and hilly terrain have been investigated and three categories have been identified. A deeper investigation on an urban scene with a river bank has been selected to extend the existing algorithm. The results show that an iterative use of Skewness Balancing is suitable for sloped terrain.
Resumo:
Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other spaceborne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (< about 3 for GLAS) are retrieved from the reflected lidar signal. This paper presents a comprehensive study of possible retrievals of optical depth of thick clouds using solar background light and treating GLAS as a solar radiometer. To do so one must first calibrate the reflected solar radiation received by the photon-counting detectors of the GLAS 532-nm channel, the primary channel for atmospheric products. Solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (i) calibration with coincident airborne and GLAS observations, (ii) calibration with coincident Geostationary Opera- tional Environmental Satellite (GOES) and GLAS observations of deep convective clouds, and (iii) cali- bration from first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retriev- als is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases.
Resumo:
This paper describes the design and manufacture of the filters and antireflection coatings used in the HIRDLS instrument. The multilayer design of the filters and coatings, choice of layer materials, and the deposition techniques adopted to ensure adequate layer thickness control is discussed. The spectral assessment of the filters and coatings is carried out using a FTIR spectrometer; some measurement results are presented together with discussion of measurement accuracy and the identification and avoidance of measurement artifacts. The post-deposition processing of the filters by sawing to size, writing of an identification code onto the coatings and the environmental testing of the finished filters are also described.
Resumo:
This study evaluates the use of European Centre for Medium-Range Weather Forecasts (ECMWF) products in monitoring and forecasting drought conditions during the recent 2010–2011 drought in the Horn of Africa (HoA). The region was affected by a precipitation deficit in both the October–December 2010 and March–May 2011 rainy seasons. These anomalies were captured by the ERA-Interim reanalysis (ERAI), despite its limitations in representing the March–May interannual variability. Soil moisture anomalies of ERAI also identified the onset of the drought condition early in October 2010 with a persistent drought still present in September 2011. This signal was also evident in normalized difference vegetation index (NDVI) remote sensing data. The precipitation deficit in October–December 2010 was associated with a strong La Niña event. The ECMWF seasonal forecasts for the October–December 2010 season predicted the La Niña event from June 2010 onwards. The forecasts also predicted a below-average October–December rainfall, from July 2010 onwards. The subsequent March–May rainfall anomaly was only captured by the new ECWMF seasonal forecast system in the forecasts starting in March 2011. Our analysis shows that a recent (since 1999) drying in the region during the March–May season is captured by the new ECMWF seasonal forecast system and is consistent with recently published results. The HoA region and its population are highly vulnerable to future droughts, thus global monitoring and forecasting of drought, such as that presented here, will become increasingly important in the future. Copyright © 2012 Royal Meteorological Society
Resumo:
Very high-resolution Synthetic Aperture Radar sensors represent an alternative to aerial photography for delineating floods in built-up environments where flood risk is highest. However, even with currently available SAR image resolutions of 3 m and higher, signal returns from man-made structures hamper the accurate mapping of flooded areas. Enhanced image processing algorithms and a better exploitation of image archives are required to facilitate the use of microwave remote sensing data for monitoring flood dynamics in urban areas. In this study a hybrid methodology combining radiometric thresholding, region growing and change detection is introduced as an approach enabling the automated, objective and reliable flood extent extraction from very high-resolution urban SAR images. The method is based on the calibration of a statistical distribution of “open water” backscatter values inferred from SAR images of floods. SAR images acquired during dry conditions enable the identification of areas i) that are not “visible” to the sensor (i.e. regions affected by ‘layover’ and ‘shadow’) and ii) that systematically behave as specular reflectors (e.g. smooth tarmac, permanent water bodies). Change detection with respect to a pre- or post flood reference image thereby reduces over-detection of inundated areas. A case study of the July 2007 Severn River flood (UK) observed by the very high-resolution SAR sensor on board TerraSAR-X as well as airborne photography highlights advantages and limitations of the proposed method. We conclude that even though the fully automated SAR-based flood mapping technique overcomes some limitations of previous methods, further technological and methodological improvements are necessary for SAR-based flood detection in urban areas to match the flood mapping capability of high quality aerial photography.
Resumo:
Global NDVI data are routinely derived from the AVHRR, SPOT-VGT, and MODIS/Terra earth observation records for a range of applications from terrestrial vegetation monitoring to climate change modeling. This has led to a substantial interest in the harmonization of multisensor records. Most evaluations of the internal consistency and continuity of global multisensor NDVI products have focused on time-series harmonization in the spectral domain, often neglecting the spatial domain. We fill this void by applying variogram modeling (a) to evaluate the differences in spatial variability between 8-km AVHRR, 1-km SPOT-VGT, and 1-km, 500-m, and 250-m MODIS NDVI products over eight EOS (Earth Observing System) validation sites, and (b) to characterize the decay of spatial variability as a function of pixel size (i.e. data regularization) for spatially aggregated Landsat ETM+ NDVI products and a real multisensor dataset. First, we demonstrate that the conjunctive analysis of two variogram properties – the sill and the mean length scale metric – provides a robust assessment of the differences in spatial variability between multiscale NDVI products that are due to spatial (nominal pixel size, point spread function, and view angle) and non-spatial (sensor calibration, cloud clearing, atmospheric corrections, and length of multi-day compositing period) factors. Next, we show that as the nominal pixel size increases, the decay of spatial information content follows a logarithmic relationship with stronger fit value for the spatially aggregated NDVI products (R2 = 0.9321) than for the native-resolution AVHRR, SPOT-VGT, and MODIS NDVI products (R2 = 0.5064). This relationship serves as a reference for evaluation of the differences in spatial variability and length scales in multiscale datasets at native or aggregated spatial resolutions. The outcomes of this study suggest that multisensor NDVI records cannot be integrated into a long-term data record without proper consideration of all factors affecting their spatial consistency. Hence, we propose an approach for selecting the spatial resolution, at which differences in spatial variability between NDVI products from multiple sensors are minimized. This approach provides practical guidance for the harmonization of long-term multisensor datasets.
Resumo:
Context: Variation in photosynthetic activity of trees induced by climatic stress can be effectively evaluated using remote sensing data. Although adverse effects of climate on temperate forests have been subjected to increased scrutiny, the suitability of remote sensing imagery for identification of drought stress in such forests has not been explored fully. Aim: To evaluate the sensitivity of MODIS-based vegetation index to heat and drought stress in temperate forests, and explore the differences in stress response of oaks and beech. Methods: We identified 8 oak and 13 beech pure and mature stands, each covering between 4 and 13 MODIS pixels. For each pixel, we extracted a time series of MODIS NDVI from 2000 to 2010. We identified all sequences of continuous unseasonal NDVI decline to be used as the response variable indicative of environmental stress. Neural Networks-based regression modelling was then applied to identify the climatic variables that best explain observed NDVI declines. Results: Tested variables explained 84–97% of the variation in NDVI, whilst air temperature-related climate extremes were found to be the most influential. Beech showed a linear response to the most influential climatic predictors, while oak responded in a unimodal pattern suggesting a better coping mechanism. Conclusions: MODIS NDVI has proved sufficiently sensitive as a stand-level indicator of climatic stress acting upon temperate broadleaf forests, leading to its potential use in predicting drought stress from meteorological observations and improving parameterisation of forest stress indices.
Resumo:
Land cover maps at different resolutions and mapping extents contribute to modeling and support decision making processes. Because land cover affects and is affected by climate change, it is listed among the 13 terrestrial essential climate variables. This paper describes the generation of a land cover map for Latin America and the Caribbean (LAC) for the year 2008. It was developed in the framework of the project Latin American Network for Monitoring and Studying of Natural Resources (SERENA), which has been developed within the GOFC-GOLD Latin American network of remote sensing and forest fires (RedLaTIF). The SERENA land cover map for LAC integrates: 1) the local expertise of SERENA network members to generate the training and validation data, 2) a methodology for land cover mapping based on decision trees using MODIS time series, and 3) class membership estimates to account for pixel heterogeneity issues. The discrete SERENA land cover product, derived from class memberships, yields an overall accuracy of 84% and includes an additional layer representing the estimated per-pixel confidence. The study demonstrates in detail the use of class memberships to better estimate the area of scarce classes with a scattered spatial distribution. The land cover map is already available as a printed wall map and will be released in digital format in the near future. The SERENA land cover map was produced with a legend and classification strategy similar to that used by the North American Land Change Monitoring System (NALCMS) to generate a land cover map of the North American continent, that will allow to combine both maps to generate consistent data across America facilitating continental monitoring and modeling
Resumo:
Land cover plays a key role in global to regional monitoring and modeling because it affects and is being affected by climate change and thus became one of the essential variables for climate change studies. National and international organizations require timely and accurate land cover information for reporting and management actions. The North American Land Change Monitoring System (NALCMS) is an international cooperation of organizations and entities of Canada, the United States, and Mexico to map land cover change of North America's changing environment. This paper presents the methodology to derive the land cover map of Mexico for the year 2005 which was integrated in the NALCMS continental map. Based on a time series of 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) data and an extensive sample data base the complexity of the Mexican landscape required a specific approach to reflect land cover heterogeneity. To estimate the proportion of each land cover class for every pixel several decision tree classifications were combined to obtain class membership maps which were finally converted to a discrete map accompanied by a confidence estimate. The map yielded an overall accuracy of 82.5% (Kappa of 0.79) for pixels with at least 50% map confidence (71.3% of the data). An additional assessment with 780 randomly stratified samples and primary and alternative calls in the reference data to account for ambiguity indicated 83.4% overall accuracy (Kappa of 0.80). A high agreement of 83.6% for all pixels and 92.6% for pixels with a map confidence of more than 50% was found for the comparison between the land cover maps of 2005 and 2006. Further wall-to-wall comparisons to related land cover maps resulted in 56.6% agreement with the MODIS land cover product and a congruence of 49.5 with Globcover.
Resumo:
Since 1999, the National Commission for the Knowledge and Use of the Biodiversity (CONABIO) in Mexico has been developing and managing the “Operational program for the detection of hot-spots using remote sensing techniques”. This program uses images from the MODerate resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites and from the Advanced Very High Resolution Radiometer of the National Oceanic and Atmospheric Administration (NOAA-AVHRR), which are operationally received through the Direct Readout station (DR) at CONABIO. This allows the near-real time monitoring of fire events in Mexico and Central America. In addition to the detection of active fires, the location of hot spots are classified with respect to vegetation types, accessibility, and risk to Nature Protection Areas (NPA). Besides the fast detection of fires, further analysis is necessary due to the considerable effects of forest fires on biodiversity and human life. This fire impact assessment is crucial to support the needs of resource managers and policy makers for adequate fire recovery and restoration actions. CONABIO attempts to meet these requirements, providing post-fire assessment products as part of the management system in particular for satellite-based burnt area mapping. This paper provides an overview of the main components of the operational system and will present an outlook to future activities and system improvements, especially the development of a burnt area product. A special focus will also be placed on the fire occurrence within NPAs of Mexico
Resumo:
Accurate knowledge of ice-production rates within the marginal ice zones of the Arctic Ocean requires monitoring of the thin-ice distribution within polynyas. The thickness of the ice layer controls the heat loss and hence the new-ice formation. An established thinice algorithm using high-resolution MODIS data allows deriving the ice-thickness distribution within polynyas. The average uncertainty is ±4.7 cm for ice thicknesses below 0.2 m. In this study, the ice-thickness distributions within the Laptev Sea polynya for the two winter seasons 2007/08 and 2008/09 are calculated. Then, a new method is applied to determine a daily MODIS thin-ice product.
Resumo:
Remotely sensed rainfall is increasingly being used to manage climate-related risk in gauge sparse regions. Applications based on such data must make maximal use of the skill of the methodology in order to avoid doing harm by providing misleading information. This is especially challenging in regions, such as Africa, which lack gauge data for validation. In this study, we show how calibrated ensembles of equally likely rainfall can be used to infer uncertainty in remotely sensed rainfall estimates, and subsequently in assessment of drought. We illustrate the methodology through a case study of weather index insurance (WII) in Zambia. Unlike traditional insurance, which compensates proven agricultural losses, WII pays out in the event that a weather index is breached. As remotely sensed rainfall is used to extend WII schemes to large numbers of farmers, it is crucial to ensure that the indices being insured are skillful representations of local environmental conditions. In our study we drive a land surface model with rainfall ensembles, in order to demonstrate how aggregation of rainfall estimates in space and time results in a clearer link with soil moisture, and hence a truer representation of agricultural drought. Although our study focuses on agricultural insurance, the methodological principles for application design are widely applicable in Africa and elsewhere.
Resumo:
Sargassum C. Agardh is one of the most diverse genera of marine macro-algae and commonly inhabits shallow tropical and sub-tropical waters. This study aimed to investigate the effect of seasonality and the associated water quality changes on the distribution, canopy cover, mean thallus length and the biomass of Sargassum beds around Point Peron, Shoalwater Islands Marine Park, Southwest Australia. Samples of Sargassum and seawater were collected every three months from summer 2012 to summer 2014 from four different reef zones. A combination of in situ observations and WorldView-2 satellite remote-sensing images were used to map the spatial distribution of Sargassum beds and other associated benthic habitats. The results demonstrated a strong seasonal variation in the environmental parameters, canopy cover, mean thallus length, and biomass of Sargassum, which were significantly (P < 0.05) influenced by the nutrient concentration (PO43-, NO3-, NH4+) and rainfall. However, no variation in any studied parameter was observed among the four reef zones. The highest Sargassum biomass peaks occurred between late spring and early summer (from September to January). The results provide essential information to guide effective conservation and management, as well as sustainable utilisation of this coastal marine renewable resource.