63 resultados para Empirical orthogonal function
Resumo:
tWe develop an orthogonal forward selection (OFS) approach to construct radial basis function (RBF)network classifiers for two-class problems. Our approach integrates several concepts in probabilisticmodelling, including cross validation, mutual information and Bayesian hyperparameter fitting. At eachstage of the OFS procedure, one model term is selected by maximising the leave-one-out mutual infor-mation (LOOMI) between the classifier’s predicted class labels and the true class labels. We derive theformula of LOOMI within the OFS framework so that the LOOMI can be evaluated efficiently for modelterm selection. Furthermore, a Bayesian procedure of hyperparameter fitting is also integrated into theeach stage of the OFS to infer the l2-norm based local regularisation parameter from the data. Since eachforward stage is effectively fitting of a one-variable model, this task is very fast. The classifier construc-tion procedure is automatically terminated without the need of using additional stopping criterion toyield very sparse RBF classifiers with excellent classification generalisation performance, which is par-ticular useful for the noisy data sets with highly overlapping class distribution. A number of benchmarkexamples are employed to demonstrate the effectiveness of our proposed approach.
Resumo:
An efficient two-level model identification method aiming at maximising a model׳s generalisation capability is proposed for a large class of linear-in-the-parameters models from the observational data. A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry out simultaneous model selection and elastic net parameter estimation. The two regularisation parameters in the elastic net are optimised using a particle swarm optimisation (PSO) algorithm at the upper level by minimising the leave one out (LOO) mean square error (LOOMSE). There are two elements of original contributions. Firstly an elastic net cost function is defined and applied based on orthogonal decomposition, which facilitates the automatic model structure selection process with no need of using a predetermined error tolerance to terminate the forward selection process. Secondly it is shown that the LOOMSE based on the resultant ENOFR models can be analytically computed without actually splitting the data set, and the associate computation cost is small due to the ENOFR procedure. Consequently a fully automated procedure is achieved without resort to any other validation data set for iterative model evaluation. Illustrative examples are included to demonstrate the effectiveness of the new approaches.
Resumo:
An efficient data based-modeling algorithm for nonlinear system identification is introduced for radial basis function (RBF) neural networks with the aim of maximizing generalization capability based on the concept of leave-one-out (LOO) cross validation. Each of the RBF kernels has its own kernel width parameter and the basic idea is to optimize the multiple pairs of regularization parameters and kernel widths, each of which is associated with a kernel, one at a time within the orthogonal forward regression (OFR) procedure. Thus, each OFR step consists of one model term selection based on the LOO mean square error (LOOMSE), followed by the optimization of the associated kernel width and regularization parameter, also based on the LOOMSE. Since like our previous state-of-the-art local regularization assisted orthogonal least squares (LROLS) algorithm, the same LOOMSE is adopted for model selection, our proposed new OFR algorithm is also capable of producing a very sparse RBF model with excellent generalization performance. Unlike our previous LROLS algorithm which requires an additional iterative loop to optimize the regularization parameters as well as an additional procedure to optimize the kernel width, the proposed new OFR algorithm optimizes both the kernel widths and regularization parameters within the single OFR procedure, and consequently the required computational complexity is dramatically reduced. Nonlinear system identification examples are included to demonstrate the effectiveness of this new approach in comparison to the well-known approaches of support vector machine and least absolute shrinkage and selection operator as well as the LROLS algorithm.