112 resultados para Earth Observation - Remote Sensing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the year 2007 a General Observation Period (GOP) has been performed within the German Priority Program on Quantitative Precipitation Forecasting (PQP). By optimizing the use of existing instrumentation a large data set of in-situ and remote sensing instruments with special focus on water cycle variables was gathered over the full year cycle. The area of interest covered central Europe with increasing focus towards the Black Forest where the Convective and Orographically-induced Precipitation Study (COPS) took place from June to August 2007. Thus the GOP includes a variety of precipitation systems in order to relate the COPS results to a larger spatial scale. For a timely use of the data, forecasts of the numerical weather prediction models COSMO-EU and COSMO-DE of the German Meteorological Service were tailored to match the observations and perform model evaluation in a near real-time environment. The ultimate goal is to identify and distinguish between different kinds of model deficits and to improve process understanding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Canopy leaf area index (LAI), defined as the single-sided leaf area per unit ground area, is a quantitative measure of canopy foliar area. LAI is a controlling biophysical property of vegetation function, and quantifying LAI is thus vital for understanding energy, carbon and water fluxes between the land surface and the atmosphere. LAI is routinely available from Earth Observation (EO) instruments such as MODIS. However EO-derived estimates of LAI require validation before they are utilised by the ecosystem modelling community. Previous validation work on the MODIS collection 4 (c4) product suggested considerable error especially in forested biomes, and as a result significant modification of the MODIS LAI algorithm has been made for the most recent collection 5 (c5). As a result of these changes the current MODIS LAI product has not been widely validated. We present a validation of the MODIS c5 LAI product over a 121 km2 area of mixed coniferous forest in Oregon, USA, based on detailed ground measurements which we have upscaled using high resolution EO data. Our analysis suggests that c5 shows a much more realistic temporal LAI dynamic over c4 values for the site we examined. We find improved spatial consistency between the MODIS c5 LAI product and upscaled in situ measurements. However results also suggest that the c5 LAI product underestimates the upper range of upscaled in situ LAI measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Remote sensing observations often have correlated errors, but the correlations are typically ignored in data assimilation for numerical weather prediction. The assumption of zero correlations is often used with data thinning methods, resulting in a loss of information. As operational centres move towards higher-resolution forecasting, there is a requirement to retain data providing detail on appropriate scales. Thus an alternative approach to dealing with observation error correlations is needed. In this article, we consider several approaches to approximating observation error correlation matrices: diagonal approximations, eigendecomposition approximations and Markov matrices. These approximations are applied in incremental variational assimilation experiments with a 1-D shallow water model using synthetic observations. Our experiments quantify analysis accuracy in comparison with a reference or ‘truth’ trajectory, as well as with analyses using the ‘true’ observation error covariance matrix. We show that it is often better to include an approximate correlation structure in the observation error covariance matrix than to incorrectly assume error independence. Furthermore, by choosing a suitable matrix approximation, it is feasible and computationally cheap to include error correlation structure in a variational data assimilation algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global NDVI data are routinely derived from the AVHRR, SPOT-VGT, and MODIS/Terra earth observation records for a range of applications from terrestrial vegetation monitoring to climate change modeling. This has led to a substantial interest in the harmonization of multisensor records. Most evaluations of the internal consistency and continuity of global multisensor NDVI products have focused on time-series harmonization in the spectral domain, often neglecting the spatial domain. We fill this void by applying variogram modeling (a) to evaluate the differences in spatial variability between 8-km AVHRR, 1-km SPOT-VGT, and 1-km, 500-m, and 250-m MODIS NDVI products over eight EOS (Earth Observing System) validation sites, and (b) to characterize the decay of spatial variability as a function of pixel size (i.e. data regularization) for spatially aggregated Landsat ETM+ NDVI products and a real multisensor dataset. First, we demonstrate that the conjunctive analysis of two variogram properties – the sill and the mean length scale metric – provides a robust assessment of the differences in spatial variability between multiscale NDVI products that are due to spatial (nominal pixel size, point spread function, and view angle) and non-spatial (sensor calibration, cloud clearing, atmospheric corrections, and length of multi-day compositing period) factors. Next, we show that as the nominal pixel size increases, the decay of spatial information content follows a logarithmic relationship with stronger fit value for the spatially aggregated NDVI products (R2 = 0.9321) than for the native-resolution AVHRR, SPOT-VGT, and MODIS NDVI products (R2 = 0.5064). This relationship serves as a reference for evaluation of the differences in spatial variability and length scales in multiscale datasets at native or aggregated spatial resolutions. The outcomes of this study suggest that multisensor NDVI records cannot be integrated into a long-term data record without proper consideration of all factors affecting their spatial consistency. Hence, we propose an approach for selecting the spatial resolution, at which differences in spatial variability between NDVI products from multiple sensors are minimized. This approach provides practical guidance for the harmonization of long-term multisensor datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate a coronal mass ejection (CME) propagating toward Earth on 29 March 2011. This event is specifically chosen for its predominately northward directed magnetic field, so that the influence from the momentum flux onto Earth can be isolated. We focus our study on understanding how a small Earth-directed segment propagates. Mass images are created from the white-light cameras onboard STEREO which are also converted into mass height-time maps (mass J-maps). The mass tracks on these J-maps correspond to the sheath region between the CME and its associated shock front as detected by in situ measurements at L1. A time series of mass measurements from the STEREO COR-2A instrument is made along the Earth propagation direction. Qualitatively, this mass time series shows a remarkable resemblance to the L1 in situ density series. The in situ measurements are used as inputs into a three-dimensional (3-D) magnetospheric space weather simulation from the Community Coordinated Modeling Center. These simulations display a sudden compression of the magnetosphere from the large momentum flux at the leading edge of the CME, and predictions are made for the time derivative of the magnetic field (dB/dt) on the ground. The predicted dB/dt values were then compared with the observations from specific equatorially located ground stations and showed notable similarity. This study of the momentum of a CME from the Sun down to its influence on magnetic ground stations on Earth is presented as a preliminary proof of concept, such that future attempts may try to use remote sensing to create density and velocity time series as inputs to magnetospheric simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a study of coronal mass ejections (CMEs) which impacted one of the STEREO spacecraft between January 2008 and early 2010. We focus our study on 20 CMEs which were observed remotely by the Heliospheric Imagers (HIs) onboard the other STEREO spacecraft up to large heliocentric distances. We compare the predictions of the Fixed-Φ and Harmonic Mean (HM) fitting methods, which only differ by the assumed geometry of the CME. It is possible to use these techniques to determine from remote-sensing observations the CME direction of propagation, arrival time and final speed which are compared to in-situ measurements. We find evidence that for large viewing angles, the HM fitting method predicts the CME direction better. However, this may be due to the fact that only wide CMEs can be successfully observed when the CME propagates more than 100∘ from the observing spacecraft. Overall eight CMEs, originating from behind the limb as seen by one of the STEREO spacecraft can be tracked and their arrival time at the other STEREO spacecraft can be successfully predicted. This includes CMEs, such as the events on 4 December 2009 and 9 April 2010, which were viewed 130∘ away from their direction of propagation. Therefore, we predict that some Earth-directed CMEs will be observed by the HIs until early 2013, when the separation between Earth and one of the STEREO spacecraft will be similar to the separation of the two STEREO spacecraft in 2009 – 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The susceptibility of a catchment to flooding is affected by its soil moisture prior to an extreme rainfall event. While soil moisture is routinely observed by satellite instruments, results from previous work on the assimilation of remotely sensed soil moisture into hydrologic models have been mixed. This may have been due in part to the low spatial resolution of the observations used. In this study, the remote sensing aspects of a project attempting to improve flow predictions from a distributed hydrologic model by assimilating soil moisture measurements are described. Advanced Synthetic Aperture Radar (ASAR) Wide Swath data were used to measure soil moisture as, unlike low resolution microwave data, they have sufficient resolution to allow soil moisture variations due to local topography to be detected, which may help to take into account the spatial heterogeneity of hydrological processes. Surface soil moisture content (SSMC) was measured over the catchments of the Severn and Avon rivers in the South West UK. To reduce the influence of vegetation, measurements were made only over homogeneous pixels of improved grassland determined from a land cover map. Radar backscatter was corrected for terrain variations and normalized to a common incidence angle. SSMC was calculated using change detection. To search for evidence of a topographic signal, the mean SSMC from improved grassland pixels on low slopes near rivers was compared to that on higher slopes. When the mean SSMC on low slopes was 30–90%, the higher slopes were slightly drier than the low slopes. The effect was reversed for lower SSMC values. It was also more pronounced during a drying event. These findings contribute to the scant information in the literature on the use of high resolution SAR soil moisture measurement to improve hydrologic models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A present day control integration performed with the Hadley Centre's coupled climate model HadGEM1.2 experiences a large salinity bias in the Arctic Ocean when compared to in situ observations. Such a large salinity bias may have implications for both Arctic and Atlantic Ocean circulation. Large differences are seen between the runoff in HadGEM and the observations from the Global Runoff Data Centre, in particular in the Lena catchment, which could account for this salinity bias. We suggest that this discrepancy in runoff is, at least in part, due to a lack of snow accumulation in the model. The model climatology is very different to those obtained by remote sensing, such as the Global Snow Water Equivalent Climatology (NSIDC) and GlobSnow (ESA).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Global Ocean Data Assimilation Experiment (GODAE [http:// www.godae.org]) has spanned a decade of rapid technological development. The ever-increasing volume and diversity of oceanographic data produced by in situ instruments, remote-sensing platforms, and computer simulations have driven the development of a number of innovative technologies that are essential for connecting scientists with the data that they need. This paper gives an overview of the technologies that have been developed and applied in the course of GODAE, which now provide users of oceanographic data with the capability to discover, evaluate, visualize, download, and analyze data from all over the world. The key to this capability is the ability to reduce the inherent complexity of oceanographic data by providing a consistent, harmonized view of the various data products. The challenges of data serving have been addressed over the last 10 years through the cooperative skills and energies of many individuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As part of its Data User Element programme, the European Space Agency funded the GlobMODEL project which aimed at investigating the scientific, technical, and organizational issues associated with the use and exploitation of remotely-sensed observations, particularly from new sounders. A pilot study was performed as a "demonstrator" of the GlobMODEL idea, based on the use of new data, with a strong European heritage, not yet assimilated operationally. Two parallel assimilation experiments were performed, using either total column ozone or ozone profiles retrieved at the Royal Netherlands Meteorological Institute (KNMI) from the Ozone Monitoring Instrument (OMI). In both cases, the impact of assimilating OMI data in addition to the total ozone columns from the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) on the European Centre for Medium Range Weather Forecasts (ECMWF) ozone analyses was assessed by means of independent measurements. We found that the impact of OMI total columns is mainly limited to the region between 20 and 80 hPa, and is particularly important at high latitudes in the Southern hemisphere where the stratospheric ozone transport and chemical depletion are generally difficult to model with accuracy. Furthermore, the assimilation experiments carried out in this work suggest that OMI DOAS (Differential Optical Absorption Spectroscopy) total ozone columns are on average larger than SCIAMACHY total columns by up to 3 DU, while OMI total columns derived from OMI ozone profiles are on average about 8 DU larger than SCIAMACHY total columns. At the same time, the demonstrator brought to light a number of issues related to the assimilation of atmospheric composition profiles, such as the shortcomings arising when the vertical resolution of the instrument is not properly accounted for in the assimilation. The GlobMODEL demonstrator accelerated scientific and operational utilization of new observations and its results - prompted ECMWF to start the operational assimilation of OMI total column ozone data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a recent investigation, Landsat TM and ETM+ data were used to simulate different resolutions of remotely-sensed images (from 30 to 1100 m) and to analyze the effect of resolution on a range of landscape metrics associated with spatial patterns of forest fragmentation in Chapare, Bolivia since the mid-1980s. Whereas most metrics were found to be highly dependent on pixel size, several fractal metrics (DLFD, MPFD, and AWMPFD) were apparently independent of image resolution, in contradiction with a sizeable body of literature indicating that fractal dimensions of natural objects depend strongly on image characteristics. The present re-analysis of the Chapare images, using two alternative algorithms routinely used for the evaluation of fractal dimensions, shows that the values of the box-counting and information fractal dimensions are systematically larger, sometimes by as much as 85%, than the "fractal" indices DLFD, MPFD, and AWMFD for the same images. In addition, the geometrical fractal features of the forest and non-forest patches in the Chapare region strongly depend on the resolution of images used in the analysis. The largest dependency on resolution occurs for the box-counting fractal dimension in the case of the non-forest patches in 1993, where the difference between the 30 and I 100 m-resolution images corresponds to 24% of the full theoretical range (1.0 to 2.0) of the mass fractal dimension. The observation that the indices DLFD, MPFD, and AWMPFD, unlike the classical fractal dimensions, appear relatively unaffected by resolution in the case of the Chapare images seems due essentially to the fact that these indices are based on a heuristic, "non-geometric" approach to fractals. Because of their lack of a foundation in fractal geometry, nothing guarantees that these indices will be resolution-independent in general. (C) 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we pledge that physically based equations should be combined with remote sensing techniques to enable a more theoretically rigorous estimation of area-average soil heat flux, G. A standard physical equation (i.e. the analytical or exact method) for the estimation of G, in combination with a simple, but theoretically derived, equation for soil thermal inertia (F), provides the basis for a more transparent and readily interpretable method for the estimation of G; without the requirement for in situ instrumentation. Moreover, such an approach ensures a more universally applicable method than those derived from purely empirical studies (employing vegetation indices and albedo, for example). Hence, a new equation for the estimation of Gamma(for homogeneous soils) is discussed in this paper which only requires knowledge of soil type, which is readily obtainable from extant soil databases and surveys, in combination with a coarse estimate of moisture status. This approach can be used to obtain area-averaged estimates of Gamma(and thus G, as explained in paper II) which is important for large-scale energy balance studies that employ aircraft or satellite data. Furthermore, this method also relaxes the instrumental demand for studies at the plot and field scale (no requirement for in situ soil temperature sensors, soil heat flux plates and/or thermal conductivity sensors). In addition, this equation can be incorporated in soil-vegetation-atmosphere-transfer models that use the force restore method to update surface temperatures (such as the well-known ISBA model), to replace the thermal inertia coefficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For vegetated surfaces, calculation of soil heat flux, G, with the Exact or Analytical method requires a harmonic analysis of below-canopy soil surface temperature, to obtain the shape of the diurnal course of G. When determining G with remote sensing methods, only composite (vegetation plus soil) radiometric brightness temperature is available. This paper presents a simple equation that relates the sum of the harmonic terms derived for the composite radiometric surface temperature to that of belowcanopy soil surface temperature. The thermal inertia, Gamma(,) for which a simple equation has been presented in a companion paper, paper I, is used to set the magnitude of G. To assess the success of the method proposed in this paper for the estimation of the diurnal shape of G, a comparison was made between 'remote' and in situ calculated values from described field sites. This indicated that the proposed method was suitable for the estimation of the shape of G for a variety of vegetation types and densities. The approach outlined in paper I, to obtain Gamma, was then combined with the estimated harmonic terms to predict estimates of G, which were compared to values predicted by empirical remote methods found in the literature. This indicated that the method proposed in the combination of papers I and II gave reliable estimates of G, which, in comparison to the other methods, resulted in more realistic predictions for vegetated surfaces. This set of equations can also be used for bare and sparsely vegetated soils, making it a universally applicable method. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method is presented which allows thermal inertia (the soil heat capacity times the square root of the soil thermal diffusivity, C(h)rootD(h)), to be estimated remotely from micrometeorological observations. The method uses the drop in surface temperature, T-s, between sunset and sunrise, and the average night-time net radiation during that period, for clear, still nights. A Fourier series analysis was applied to analyse the time series of T-s . The Fourier series constants, together with the remote estimate of thermal inertia, were used in an analytical expression to calculate diurnal estimates of the soil heat flux, G. These remote estimates of C(h)rootD(h) and G compared well with values derived from in situ sensors. The remote and in situ estimates of C(h)rootD(h) both correlated well with topsoil moisture content. This method potentially allows area-average estimates of thermal inertia and soil heat flux to be derived from remote sensing, e.g. METEOSAT Second Generation, where the area is determined by the sensor's height and viewing angle. (C) 2003 Elsevier B.V. All rights reserved.