269 resultados para Distributed algorithm
Resumo:
This paper presents a paralleled Two-Pass Hexagonal (TPA) algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS) for motion estimation. In the TPA., Motion Vectors (MV) are generated from the first-pass LHMEA and are used as predictors for second-pass HEXBS motion estimation, which only searches a small number of Macroblocks (MBs). We introduced hashtable into video processing and completed parallel implementation. We propose and evaluate parallel implementations of the LHMEA of TPA on clusters of workstations for real time video compression. It discusses how parallel video coding on load balanced multiprocessor systems can help, especially on motion estimation. The effect of load balancing for improved performance is discussed. The performance or the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms.
Resumo:
This paper presents a novel two-pass algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS). compensation. for block base motion On the basis of research from previous algorithms, especially an on-the-edge motion estimation algorithm called hexagonal search (HEXBS), we propose the LHMEA and the Two-Pass Algorithm (TPA). We introduce hashtable into video compression. In this paper we employ LHMEA for the first-pass search in all the Macroblocks (MB) in the picture. Motion Vectors (MV) are then generated from the first-pass and are used as predictors for second-pass HEXBS motion estimation, which only searches a small number of MBs. The evaluation of the algorithm considers the three important metrics being time, compression rate and PSNR. The performance of the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms. Experimental results show that the proposed algorithm can offer the same compression rate as the Full Search. LHMEA with TPA has significant improvement on HEXBS and shows a direction for improving other fast motion estimation algorithms, for example Diamond Search.
Resumo:
This paper presents a paralleled Two-Pass Hexagonal (TPA) algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS) for motion estimation. In the TPA, Motion Vectors (MV) are generated from the first-pass LHMEA and are used as predictors for second-pass HEXBS motion estimation, which only searches a small number of Macroblocks (MBs). We introduced hashtable into video processing and completed parallel implementation. We propose and evaluate parallel implementations of the LHMEA of TPA on clusters of workstations for real time video compression. It discusses how parallel video coding on load balanced multiprocessor systems can help, especially on motion estimation. The effect of load balancing for improved performance is discussed. The performance of the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms.
Resumo:
This paper presents a paralleled Two-Pass Hexagonal (TPA) algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS) for motion estimation. In the TPA, Motion Vectors (MV) are generated from the first-pass LHMEA and are used as predictors for second-pass HEXBS motion estimation, which only searches a small number of Macroblocks (MBs). We introduced hashtable into video processing and completed parallel implementation. We propose and evaluate parallel implementations of the LHMEA of TPA on clusters of workstations for real time video compression. It discusses how parallel video coding on load balanced multiprocessor systems can help, especially on motion estimation. The effect of load balancing for improved performance is discussed. The performance of the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms.
Resumo:
This paper presents an improved Two-Pass Hexagonal (TPA) algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS) for motion estimation. In the TPA, Motion Vectors (MV) are generated from the first-pass LHMEA and are used as predictors for second-pass HEXBS motion estimation, which only searches a small number of Macroblocks (MBs). The hashtable structure of LHMEA is improved compared to the original TPA and LHMEA. The evaluation of the algorithm considers the three important metrics being processing time, compression rate and PSNR. The performance of the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms.
Resumo:
This paper presents an improved parallel Two-Pass Hexagonal (TPA) algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS) for motion estimation. Motion Vectors (MV) are generated from the first-pass LHMEA and used as predictors for second-pass HEXBS motion estimation, which only searches a small number of Macroblocks (MBs). We used bashtable into video processing and completed parallel implementation. The hashtable structure of LHMEA is improved compared to the original TPA and LHMEA. We propose and evaluate parallel implementations of the LHMEA of TPA on clusters of workstations for real time video compression. The implementation contains spatial and temporal approaches. The performance of the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms.
Resumo:
This paper analyzes the performance of Enhanced relay-enabled Distributed Coordination Function (ErDCF) for wireless ad hoc networks under transmission errors. The idea of ErDCF is to use high data rate nodes to work as relays for the low data rate nodes. ErDCF achieves higher throughput and reduces energy consumption compared to IEEE 802.11 Distributed Coordination Function (DCF) in an ideal channel environment. However, there is a possibility that this expected gain may decrease in the presence of transmission errors. In this work, we modify the saturation throughput model of ErDCF to accurately reflect the impact of transmission errors under different rate combinations. It turns out that the throughput gain of ErDCF can still be maintained under reasonable link quality and distance.
Resumo:
In this paper we evaluate the performance of our earlier proposed enhanced relay-enabled distributed coordination function (ErDCF) for wireless ad hoc networks. The idea of ErDCF is to use high data rate nodes to work as relays for the low data rate nodes. ErDCF achieves higher throughput and reduced energy consumption compared to IEEE 802.11 distributed coordination function (DCF). This is a result of. 1) using relay which helps to increase the throughput and lower overall blocking time of nodes due to faster dual-hop transmission, 2) using dynamic preamble (i.e. using short preamble for the relay transmission) which further increases the throughput and lower overall blocking time and also by 3) reducing unnecessary overhearing (by other nodes not involved in transmission). We evaluate the throughput and energy performance of the ErDCF with different rate combinations. ErDCF (11,11) (ie. R1=R2=11 Mbps) yields a throughput improvement of 92.9% (at the packet length of 1000 bytes) and an energy saving of 72.2% at 50 nodes.
Resumo:
This paper analyzes the performance of enhanced relay-enabled distributed coordination function (ErDCF) for wireless ad hoc networks under transmission errors. The idea of ErDCF is to use high data rate nodes to work as relays for the low data rate nodes. ErDCF achieves higher throughput and reduces energy consumption compared to IEEE 802.11 distributed coordination function (DCF) in an ideal channel environment. However, there is a possibility that this expected gain may decrease in the presence of transmission errors. In this work, we modify the saturation throughput model of ErDCF to accurately reflect the impact of transmission errors under different rate combinations. It turns out that the throughput gain of ErDCF can still be maintained under reasonable link quality and distance.
Resumo:
Tycho was conceived in 2003 in response to a need by the GridRM [1] resource-monitoring project for a ldquolight-weightrdquo, scalable and easy to use wide-area distributed registry and messaging system. Since Tycho's first release in 2006 a number of modifications have been made to the system to make it easier to use and more flexible. Since its inception, Tycho has been utilised across a number of application domains including widearea resource monitoring, distributed queries across archival databases, providing services for the nodes of a Cray supercomputer, and as a system for transferring multi-terabyte scientific datasets across the Internet. This paper provides an overview of the initial Tycho system, describes a number of applications that utilise Tycho, discusses a number of new utilities, and how the Tycho infrastructure has evolved in response to experience of building applications with it.
Resumo:
A hybridised and Knowledge-based Evolutionary Algorithm (KEA) is applied to the multi-criterion minimum spanning tree problems. Hybridisation is used across its three phases. In the first phase a deterministic single objective optimization algorithm finds the extreme points of the Pareto front. In the second phase a K-best approach finds the first neighbours of the extreme points, which serve as an elitist parent population to an evolutionary algorithm in the third phase. A knowledge-based mutation operator is applied in each generation to reproduce individuals that are at least as good as the unique parent. The advantages of KEA over previous algorithms include its speed (making it applicable to large real-world problems), its scalability to more than two criteria, and its ability to find both the supported and unsupported optimal solutions.