74 resultados para Dimethyl sulfoxide (DMSO)
Resumo:
Two new nickel(11) complexes, [NiLL'(H2O)(2)Cl] (1) and [{NiLL'(H2O)](2)(mu-H)]NO3·H2O(2), have been synthesized using a tridentate Schiff base ligand, HL, 2-[(2-dimethylamino-ethylimino)-methyl]-phenol, along with Cl- or NO3(-) as an anionic co-ligand or counter anion (where L'H = salicylaldehyde). Both complexes have been characterized by X-ray crystallography. The structural analyses reveal that complex 1 is mononuclear whereas 2 is a hydrogen-bridged dinuclear complex. The Ni(II) ions possess a distorted octahedral geometry in both structures. Both complexes show negative solvatochromic behaviour with increasing donor number (DN) of the solvent. In more coordinating solvents, like DMSO or methanol, the colour of the solutions is green, whereas in less coordinating solvents, like dichloromethane (DCM) or acetonitrile, it is red.
Resumo:
The reaction of cis-[RuCl2(dmso)(4)] with [6-(2-pyridinyl)-5,6-dihydrobenzimidazo[1,2-c] quinazoline] (L) afforded in pure form a blue ruthenium(II) complex, [Ru(L-1)(2)] (1), where the original L changed to [2-(1H-benzoimidazol-2-yl)-phenyl]-pyridin-2-ylmethylene-amine (HL1). Treatment of RuCl3 center dot 3H(2)O with L in dry tetrahydrofuran in inert atmosphere led to a green ruthenium(II) complex, trans-[RuCl2(L-2)(2)] (2), where L was oxidized in situ to the neutral species 6-pyridin-yl-benzo[4,5]imidazo[1,2-c] quinazoline (L-2). Complex 2 was also obtained from the reaction of RuCl3 center dot 3H(2)O with L-2 in dry ethanol. Complexes 1 and 2 have been characterized by physico-chemical and spectroscopic tools, and 1 has been structurally characterized by single-crystal X-ray crystallography. The electrochemical behavior of the complexes shows the Ru(III)/Ru(II) couple at different potentials with quasi-reversible voltammograms. The interaction of these complexes with calf thymus DNA by using absorption and emission spectral studies allowed determination of the binding constant K-b and the linear Stern-Volmer quenching constant K-SV
Resumo:
Two new Fe-III complexes, [Fe2L2(mu-OMe)(2)(NCS)(2)] (1) and [Fe2L2(mu-N-3)(2)(N-3)(2)] (2), have been synthesized using a N,N,O-donor tridentate Schiff base ligand HL {2-[(2-dimethylaminoethylimino)methyl]phenol}, the condensation product of salicylaldehyde and N,N-dimethyl-1,2-diaminoethane. The complexes were characterized by X-ray structural analyses and variable-temperature magnetic susceptibility measurements. Both crystal structures are centrosymmetric dimers containing two Fe-III atoms, which are bridged in compound 1 by two methoxy anions and in compound 2 by two mu-1,1-azides. The chelating tridentate Schiff base and a terminal thiocyanato (for 1) or azido (for 2) group complete the hexacoordination of the distorted octahedral environment of each iron center. The magnetic properties of compound 1 show the presence of antiferromagnetic exchange interactions mediated by double methoxy bridges (J = -29.45 cm(-1)). Compound 2 shows the presence of very weak ferromagnetic exchange interactions mediated by double mu-1,1-N-3 bridges (J = 1.08 cm(-1)).
Synthesis, structure and electrochemical properties of some thiosemicarbazone complexes of ruthenium
Resumo:
Reaction of salicylaldehyde thiosemicarbazone (L-1), 2-hydroxyacetophenone thiosemicarbazone (L-2) and 2-hydroxynapthaldehyde thiosemicarbazone (L-3) with [Ru(dmso)(4)Cl-2] affords a family of three dimeric complexes (1), (2) and (3) respectively. Crystal structure of the complex (3) has been determined. In these complexes, each monomeric unit consists of one ruthenium center and two thiosemicarbazone ligands, one of which is coordinated to ruthenium as O,N,S-donor and the other as N,S-donor forming a five-membered chelate ring. Two such monomeric units remain bridged by the sulfur atoms of the O,N,S-coordinated thiosemicarbazones. Due to this sulfur bridging, the two ruthenium centers become so close to each other, that a ruthenium-ruthenium single bond is also formed. All the complexes are diamagnetic in the solid state and in dimethylsulfoxide solution show intense absorptions in the visible and ultraviolet region. Origin of these spectral transitions has been established from DFT calculations. Cyclic voltammetry on the complexes shows two irreversible ligand oxidations on the positive side of SCE and two irreversible ligand reductions on the negative side.
Resumo:
The 1:1 condensation of 1,2-diaminopropane and 1-phenylbutane-1,3-dione at high dilution gives a mixture of two positional isomers of terdentate mono-condensed Schiff bases 6-amino-3-methyl-1-phenyl-4-aza-2-hepten-1-one (HAMPAH) and 6-amino-3,5-dimethyl-1-phenyl-4-aza-2-hexen-1-one (HADPAH). The mixture of the terdentate ligands has been used for further condensation with pyridine-2-carboxaldehyde or 2-acetylpyridine to obtain the unsymmetrical tetradentate Schiff base ligands. The tetradentate Schiff bases are then allowed to react with the methanol solution of copper(II) and nickel(II) perchlorate separately. The X-ray diffraction confirms the structures of two of the complexes and shows that the condensation site of the diamine with 1-phenylbutane-1,3-dione is the same.
Resumo:
This article describes the synthesis and anion binding properties of a series of ‘picket fence’ metalloporphyrin complexes, within which the metal centre is systematically varied. The porphyrin structure contains four amide bonds and is the same for each metal. The anion binding properties of these receptors are further contrasted with those of their tetraphenylporphyrin congeners to elucidate both the effect of the metal centre and the influence of the amide groups on the anion recognition process. Anion binding was demonstrated using UV/visible and 1H NMR spectroscopies, electrochemistry and luminescence. The metal centre was found to be highly influential in the strength and selectivity of binding; for example, the cadmium and mercury complexes exhibited far greater affinities for anions than the zinc complexes in competitive solvents such as DMSO. The amide functionalities were found to enhance the anion binding process.
Resumo:
The invention discloses an improved process for the preparation of 2,2,5,5-tetrasubstituted hexane-1,6-dicarbonyl compounds, and in particular diethyl 2,2,5,5-tetramethylhexanedioate and dimethyl 2,2,5,5-tetramethylhexanedioate, by the alkylation of 1,2-difunctional ethane compounds with enolates of carbonyl compounds. The process provides higher yields and greater synthetic brevity than existing processes.
Resumo:
Aqueous extracts of dried shiitake mushrooms (Lentinus edodes) were prepared as taste and flavour enhancers for meat formulations. Effects of time and temperature on the chemical and sensory properties of the extracts were examined. Extracts prepared at 70 °C had significantly higher concentrations (p<0.001) of the savoury tasting 5’-ribonucleotides than those prepared at 22 °C but increasing the extraction time from 30 to 360 mins only increased their recovery slightly (p=0.053). In contrast, higher temperature extracts had considerably smaller concentrations of the major volatile compounds, such as lenthionine, 1-octen-3-ol, 1,3-dithiethane and dimethyl disulfide, because of loss through volatilisation. A sensory discrimination test showed that the lower temperature extract was perceived to have less umami taste than the higher temperature extract (p=0.048). Incorporating the 70 °C shiitake extract into minced meat formulations led to significantly higher levels of savoury tasting 5’-ribonucleotides in the cooked meat but no significant difference in umami perception.
Resumo:
The Hadley Centre Global Environmental Model (HadGEM) includes two aerosol schemes: the Coupled Large-scale Aerosol Simulator for Studies in Climate (CLASSIC), and the new Global Model of Aerosol Processes (GLOMAP-mode). GLOMAP-mode is a modal aerosol microphysics scheme that simulates not only aerosol mass but also aerosol number, represents internally-mixed particles, and includes aerosol microphysical processes such as nucleation. In this study, both schemes provide hindcast simulations of natural and anthropogenic aerosol species for the period 2000–2006. HadGEM simulations of the aerosol optical depth using GLOMAP-mode compare better than CLASSIC against a data-assimilated aerosol re-analysis and aerosol ground-based observations. Because of differences in wet deposition rates, GLOMAP-mode sulphate aerosol residence time is two days longer than CLASSIC sulphate aerosols, whereas black carbon residence time is much shorter. As a result, CLASSIC underestimates aerosol optical depths in continental regions of the Northern Hemisphere and likely overestimates absorption in remote regions. Aerosol direct and first indirect radiative forcings are computed from simulations of aerosols with emissions for the year 1850 and 2000. In 1850, GLOMAP-mode predicts lower aerosol optical depths and higher cloud droplet number concentrations than CLASSIC. Consequently, simulated clouds are much less susceptible to natural and anthropogenic aerosol changes when the microphysical scheme is used. In particular, the response of cloud condensation nuclei to an increase in dimethyl sulphide emissions becomes a factor of four smaller. The combined effect of different 1850 baselines, residence times, and abilities to affect cloud droplet number, leads to substantial differences in the aerosol forcings simulated by the two schemes. GLOMAP-mode finds a presentday direct aerosol forcing of −0.49Wm−2 on a global average, 72% stronger than the corresponding forcing from CLASSIC. This difference is compensated by changes in first indirect aerosol forcing: the forcing of −1.17Wm−2 obtained with GLOMAP-mode is 20% weaker than with CLASSIC. Results suggest that mass-based schemes such as CLASSIC lack the necessary sophistication to provide realistic input to aerosol-cloud interaction schemes. Furthermore, the importance of the 1850 baseline highlights how model skill in predicting present-day aerosol does not guarantee reliable forcing estimates. Those findings suggest that the more complex representation of aerosol processes in microphysical schemes improves the fidelity of simulated aerosol forcings.
Resumo:
Natural aerosol plays a significant role in the Earth’s system due to its ability to alter the radiative balance of the Earth. Here we use a global aerosol microphysics model together with a radiative transfer model to estimate radiative effects for five natural aerosol sources in the present-day atmosphere: dimethyl sulfide (DMS), sea-salt, volcanoes, monoterpenes, and wildfires. We calculate large annual global mean aerosol direct and cloud albedo effects especially for DMS-derived sulfate (–0.23 Wm–2 and –0.76 Wm–2, respectively), volcanic sulfate (–0.21 Wm–2 and –0.61 Wm–2) and sea-salt (–0.44 Wm–2 and –0.04 Wm–2). The cloud albedo effect responds nonlinearly to changes in emission source strengths. The natural sources have both markedly different radiative efficiencies and indirect/direct radiative effect ratios. Aerosol sources that contribute a large number of small particles (DMS-derived and volcanic sulfate) are highly effective at influencing cloud albedo per unit of aerosol mass burden.
Resumo:
Purpose: Retinoic acid (RA) is a metabolite of vitamin A that plays a fundamental role in the development and function of the human eye. The purpose of this study was to investigate the effects of RA on the phenotype of corneal stromal keratocytes maintained in vitro for extended periods under serum-free conditions. Methods: Keratocytes isolated from human corneas were cultured up to 21 days in serum-free media supplemented with RA or DMSO vehicle. The effects of RA and of its removal after treatment on cell proliferation and morphology were evaluated. In addition, the expression of keratocyte markers was quantified at the transcriptional and protein levels by quantitative PCR and immunoblotting or ELISA, respectively. Furthermore, the effects of RA on keratocyte migration were tested using scratch assays. Results: Keratocytes cultured with RA up to 10×10-6 M showed enhanced proliferation and stratification, and reduced mobility. RA also promoted the expression of keratocyte-characteristic proteoglycans such as keratocan, lumican, and decorin, and increased the amounts of collagen type-I in culture while significantly reducing the expression of matrix metalloproteases 1, 3, and 9. RA effects were reversible, and cell phenotype reverted to that of control after removal of RA from media. Conclusions: RA was shown to control the phenotype of human corneal keratocytes cultured in vitro by regulating cell behaviour and extracellular matrix composition. These findings contribute to our understanding of corneal stromal biology in health and disease, and may prove useful in optimizing keratocyte cultures for applications in tissue engineering, cell biology, and medicine.
Resumo:
The new thiogallate Na5(Ga4S)(GaS4)3·6H2O has been prepared solvothermally, using 3,5-dimethyl pyridine as a solvent, and characterised by powder and single crystal X-ray diffraction. This material, which exhibits a three-dimensional crystal structure, crystallises in the cubic space group View the MathML sourceF4¯3c (a = 17.557(4) Å). The crystal structure contains octahedral building blocks [Ga4S (GaS4)6]20−, linked into a three-dimensional network with a perovskite-type topology, and sodium hydrate clusters, [Na5(H2O)6]5+, filling the cavities in the [Ga4S(GaS4)6/2]5− framework. UV–Vis diffuse reflectance measurements indicate that this material is a wide band gap semiconductor, with a band gap of ca. 4.4 eV.
Resumo:
A general consistency in the sequential order of petroleum hydrocarbon reduction in previous biodegradation studies has led to the proposal of several molecularly based biodegradation scales. Few studies have investigated the biodegradation susceptibility of petroleum hydrocarbon products in soil media, however, and metabolic preferences can change with habitat type. A laboratory based study comprising gas chromatography–mass spectrometry (GC–MS) analysis of extracts of oil-treated soil samples incubated for up to 161 days was conducted to investigate the biodegradation of crude oil exposed to sandy soils of Barrow Island, home to both a Class ‘‘A” nature reserve and Australia’s largest on-shore oil field. Biodegradation trends of the hydrocarbon-treated soils were largely consistent with previous reports but some unusual behaviour was recognised both between and within hydrocarbon classes. For example, the n-alkanes persisted at trace levels from day 86 to 161 following the removal of typically more stable dimethyl naphthalenes and methyl phenanthrenes. The relative susceptibility to biodegradation of different di- tri- and tetramethylnaphthalene isomers also showed several features distinct from previous reports. The unique biodegradation behaviour of Barrow Is. soil likely reflects difference in microbial functioning with physiochemical variation in the environment. Correlation of molecular parameters, reduction rates of selected alkyl naphthalene isomers and CO2 respiration values with a delayed (61 d) oil-treated soil identified a slowing of biodegradation with microcosm incubation; a reduced function or population of incubated soil flora might also influence the biodegradation patterns observed.
Resumo:
A series of ruthenium(II) complexes [{RuCl(CO)(PMe3)3(–CHvCH–)}nX], 1a–1c (1a: n = 3, X = 3,3’’- dimethyl-2,2’:3’,2’’-terthiophene; 1b: n = 2, X = 2,2’-bithiophene; 1c: n = 2, X = 2,3-bis(3-methylthiophen- 2-yl)benzothiophene) and [{Cp*(dppe)2Ru(–CuC–)}3X], 1d (X = 3,3’’-dimethyl-2,2’:3’,2’’- terthiophene), were prepared and characterized by 1H, 13C and 31P NMR. Their redox, spectroscopic and bonding properties were studied with a range of spectro-electrochemical methods in combination with density functional theory calculations. The first two anodic steps observed for 1a and 1d are largely localized on the lateral frameworks of the molecular triangle, the direct conjugation between them being precluded due to the photostable open form of the dithienyl ethene moiety. The third anodic step is then mainly localized on the centerpiece of the triangular structure, affecting both bithiophene laterals. The experimental IR and UV-vis-NIR spectroelectrochemical data and, largely, also DFT calculations account for this explanation, being further supported by direct comparison with the anodic behavior of reference diruthenium complexes 1b and 1c.