64 resultados para Digital Elevation Model,
Resumo:
An ability to quantify the reliability of probabilistic flood inundation predictions is a requirement not only for guiding model development but also for their successful application. Probabilistic flood inundation predictions are usually produced by choosing a method of weighting the model parameter space, but previous study suggests that this choice leads to clear differences in inundation probabilities. This study aims to address the evaluation of the reliability of these probabilistic predictions. However, a lack of an adequate number of observations of flood inundation for a catchment limits the application of conventional methods of evaluating predictive reliability. Consequently, attempts have been made to assess the reliability of probabilistic predictions using multiple observations from a single flood event. Here, a LISFLOOD-FP hydraulic model of an extreme (>1 in 1000 years) flood event in Cockermouth, UK, is constructed and calibrated using multiple performance measures from both peak flood wrack mark data and aerial photography captured post-peak. These measures are used in weighting the parameter space to produce multiple probabilistic predictions for the event. Two methods of assessing the reliability of these probabilistic predictions using limited observations are utilized; an existing method assessing the binary pattern of flooding, and a method developed in this paper to assess predictions of water surface elevation. This study finds that the water surface elevation method has both a better diagnostic and discriminatory ability, but this result is likely to be sensitive to the unknown uncertainties in the upstream boundary condition
Resumo:
Small and medium sized enterprises (SMEs) play an important role in the European economy. A critical challenge faced by SME leaders, as a consequence of the continuing digital technology revolution, is how to optimally align business strategy with digital technology to fully leverage the potential offered by these technologies in pursuit of longevity and growth. There is a paucity of empirical research examining how e-leadership in SMEs drives successful alignment between business strategy and digital technology fostering longevity and growth. To address this gap, in this paper we develop an empirically derived e-leadership model. Initially we develop a theoretical model of e-leadership drawing on strategic alignment theory. This provides a theoretical foundation on how SMEs can harness digital technology in support of their business strategy enabling sustainable growth. An in-depth empirical study was undertaken interviewing 42 successful European SME leaders to validate, advance and substantiate our theoretically driven model. The outcome of the two stage process – inductive development of a theoretically driven e-leadership model and deductive advancement to develop a complete model through in-depth interviews with successful European SME leaders – is an e-leadership model with specific constructs fostering effective strategic alignment. The resulting diagnostic model enables SME decision makers to exercise effective e-leadership by creating productive alignment between business strategy and digital technology improving longevity and growth prospects.
Resumo:
There is growing evidence that the rate of warming is amplified with elevation, such that high-mountain environments experience more rapid changes in temperature than environments at lower elevations. Elevation-dependent warming (EDW) can accelerate the rate of change in mountain ecosystems, cryospheric systems, hydrological regimes and biodiversity. Here we review important mechanisms that contribute towards EDW: snow albedo and surface-based feedbacks; water vapour changes and latent heat release; surface water vapour and radiative flux changes; surface heat loss and temperature change; and aerosols. All lead to enhanced warming with elevation (or at a critical elevation), and it is believed that combinations of these mechanisms may account for contrasting regional patterns of EDW. We discuss future needs to increase knowledge of mountain temperature trends and their controlling mechanisms through improved observations, satellite-based remote sensing and model simulations.
Resumo:
For the last few years, I have been working on an extensive digital model of ancient Rome as it appeared in the early 4th Century AD. This sort of visualisation lends itself to many applications in diverse fields: I am currently using it for research work into illumination and sightlines in the ancient city, have licensed it for broadcast in TV documentaries and publication in magazines, and am working with a computer games studio to turn it into an online game where players will be able to walk round the streets and buildings of the entire city (when not engaged in trading with or assassinating one another). Later this year I will be making a free online course, or MOOC, about the architecture of ancient Rome, which will largely be illustrated by this model.