64 resultados para Differential equations, Partial -- Numerical solutions -- Computer programs
Resumo:
We establish an uniform factorial decay estimate for the Taylor approximation of solutions to controlled differential equations. Its proof requires a factorial decay estimate for controlled paths which is interesting in its own right.
Resumo:
We construct a quasi-sure version (in the sense of Malliavin) of geometric rough paths associated with a Gaussian process with long-time memory. As an application we establish a large deviation principle (LDP) for capacities for such Gaussian rough paths. Together with Lyons' universal limit theorem, our results yield immediately the corresponding results for pathwise solutions to stochastic differential equations driven by such Gaussian process in the sense of rough paths. Moreover, our LDP result implies the result of Yoshida on the LDP for capacities over the abstract Wiener space associated with such Gaussian process.
Resumo:
We study spectral properties of the Laplace-Beltrami operator on two relevant almost-Riemannian manifolds, namely the Grushin structures on the cylinder and on the sphere. This operator contains first order diverging terms caused by the divergence of the volume. We get explicit descriptions of the spectrum and the eigenfunctions. In particular in both cases we get a Weyl's law with leading term Elog E. We then study the drastic effect of Aharonov-Bohm magnetic potentials on the spectral properties. Other generalised Riemannian structures including conic and anti-conic type manifolds are also studied. In this case, the Aharonov-Bohm magnetic potential may affect the self-adjointness of the Laplace-Beltrami operator.
Resumo:
Simple first-order closure remains an attractive way of formulating equations for complex canopy flows when the aim is to find analytic or simple numerical solutions to illustrate fundamental physical processes. Nevertheless, the limitations of such closures must be understood if the resulting models are to illuminate rather than mislead. We propose five conditions that first-order closures must satisfy then test two widely used closures against them. The first is the eddy diffusivity based on a mixing length. We discuss the origins of this approach, its use in simple canopy flows and extensions to more complex flows. We find that it satisfies most of the conditions and, because the reasons for its failures are well understood, it is a reliable methodology. The second is the velocity-squared closure that relates shear stress to the square of mean velocity. Again we discuss the origins of this closure and show that it is based on incorrect physical principles and fails to satisfy any of the five conditions in complex canopy flows; consequently its use can lead to actively misleading conclusions.