88 resultados para Differential diagnoses
Resumo:
We propose a new satellite mission to deliver high quality measurements of upper air water vapour. The concept centres around a LiDAR in limb sounding by occultation geometry, designed to operate as a very long path system for differential absorption measurements. We present a preliminary performance analysis with a system sized to send 75 mJ pulses at 25 Hz at four wavelengths close to 935 nm, to up to 5 microsatellites in a counter-rotating orbit, carrying retroreflectors characterized by a reflected beam divergence of roughly twice the emitted laser beam divergence of 15 µrad. This provides water vapour profiles with a vertical sampling of 110 m; preliminary calculations suggest that the system could detect concentrations of less than 5 ppm. A secondary payload of a fairly conventional medium resolution multispectral radiometer allows wide-swath cloud and aerosol imaging. The total weight and power of the system are estimated at 3 tons and 2,700 W respectively. This novel concept presents significant challenges, including the performance of the lasers in space, the tracking between the main spacecraft and the retroreflectors, the refractive effects of turbulence, and the design of the telescopes to achieve a high signal-to-noise ratio for the high precision measurements. The mission concept was conceived at the Alpbach Summer School 2010.
Resumo:
The qnrS1 gene induces reduced susceptibility to fluoroquinolones in enterobacteria. We investigated the structure, antimicrobial susceptibility phenotype, and antimicrobial resistance gene characteristics of qnrS1 plasmids from hospitalized patients and community controls in southern Vietnam. We found that the antimicrobial susceptibilities, resistance gene characteristics, and plasmid structures of qnrS1 plasmids from the hospital differed from those from the community. Our data imply that the characteristics of the two plasmid groups are indicative of distinct selective pressures in the differing environments.
Resumo:
• In a free-air CO2 enrichment study (BangorFACE) Alnus glutinosa, Betula pendula and Fagus sylvatica were planted in areas of one, two and three species mixtures (n=4). The trees were exposed to ambient or elevated CO2 (580 µmol mol-1) for four years, and aboveground growth characteristics measured. • In monoculture, the mean effect of CO2 enrichment on aboveground woody biomass was +29, +22 and +16% for A. glutinosa, F. sylvatica, and B. pendula respectively. When the same species were grown in polyculture, the response to CO2 switched to +10, +7 and 0%, for A. glutinosa, B. pendula, and F. sylvatica respectively. • In ambient atmosphere our species grown in polyculture increased aboveground woody biomass from 12.9 ± 1.4 kg m-2 to 18.9 ± 1.0 kg m-2, whereas in an elevated CO2 atmosphere aboveground woody biomass increased from 15.2 ± 0.6 kg m-2 to 20.2 ± 0.6 kg m-2. The overyielding effect of polyculture was smaller (+7%) in elevated CO2 than in an ambient atmosphere (+18%). • Our results show that the aboveground response to elevated CO2 is significantly affected by intra- and inter-specific competition, and that elevated CO2 response may be reduced in forest communities comprised of tree species with contrasting functional traits.
Resumo:
BACKGROUND: Obesity is rising at an alarming rate globally. Different fermentable carbohydrates have been shown to reduce obesity. The aim of the present study was to investigate if two different fermentable carbohydrates (inulin and b-glucan) exert similar effects on body composition and central appetite regulation in high fat fed mice. METHODOLOGY/PRINCIPAL FINDINGS: Thirty six C57BL/6 male mice were randomized and maintained for 8 weeks on a high fat diet containing 0% (w/w) fermentable carbohydrate, 10% (w/w) inulin or 10% (w/w) b-glucan individually. Fecal and cecal microbial changes were measured using fluorescent in situ hybridization, fecal metabolic profiling was obtained by proton nuclear magnetic resonance (1H NMR), colonic short chain fatty acids were measured by gas chromatography, body composition and hypothalamic neuronal activation were measured using magnetic resonance imaging (MRI) and manganese enhanced MRI (MEMRI), respectively, PYY (peptide YY) concentration was determined by radioimmunoassay, adipocyte cell size and number were also measured. Both inulin and b-glucan fed groups revealed significantly lower cumulative body weight gain compared with high fat controls. Energy intake was significantly lower in b-glucan than inulin fed mice, with the latter having the greatest effect on total adipose tissue content. Both groups also showed an increase in the numbers of Bifidobacterium and Lactobacillus-Enterococcus in cecal contents as well as feces. b- glucan appeared to have marked effects on suppressing MEMRI associated neuronal signals in the arcuate nucleus, ventromedial hypothalamus, paraventricular nucleus, periventricular nucleus and the nucleus of the tractus solitarius, suggesting a satiated state. CONCLUSIONS/SIGNIFICANCE: Although both fermentable carbohydrates are protective against increased body weight gain, the lower body fat content induced by inulin may be metabolically advantageous. b-glucan appears to suppress neuronal activity in the hypothalamic appetite centers. Differential effects of fermentable carbohydrates open new possibilities for nutritionally targeting appetite regulation and body composition.
Resumo:
Evolutionary meta-algorithms for pulse shaping of broadband femtosecond duration laser pulses are proposed. The genetic algorithm searching the evolutionary landscape for desired pulse shapes consists of a population of waveforms (genes), each made from two concatenated vectors, specifying phases and magnitudes, respectively, over a range of frequencies. Frequency domain operators such as mutation, two-point crossover average crossover, polynomial phase mutation, creep and three-point smoothing as well as a time-domain crossover are combined to produce fitter offsprings at each iteration step. The algorithm applies roulette wheel selection; elitists and linear fitness scaling to the gene population. A differential evolution (DE) operator that provides a source of directed mutation and new wavelet operators are proposed. Using properly tuned parameters for DE, the meta-algorithm is used to solve a waveform matching problem. Tuning allows either a greedy directed search near the best known solution or a robust search across the entire parameter space.
Resumo:
Estimated global-scale temperature trends at Earth's surface (as recorded by thermometers) and in the lower troposphere (as monitored by satellites) diverge by up to 0.14°C per decade over the period 1979 to 1998. Accounting for differences in the spatial coverage of satellite and surface measurements reduces this differential, but still leaves a statistically significant residual of roughly 0.1°C per decade. Natural internal climate variability alone, as simulated in three state-of-the-art coupled atmosphere-ocean models, cannot completely explain this residual trend difference. A model forced by a combination of anthropogenic factors and volcanic aerosols yields surface-troposphere temperature trend differences closest to those observed.
Resumo:
We give a characterisation of the spectral properties of linear differential operators with constant coefficients, acting on functions defined on a bounded interval, and determined by general linear boundary conditions. The boundary conditions may be such that the resulting operator is not selfadjoint. We associate the spectral properties of such an operator $S$ with the properties of the solution of a corresponding boundary value problem for the partial differential equation $\partial_t q \pm iSq=0$. Namely, we are able to establish an explicit correspondence between the properties of the family of eigenfunctions of the operator, and in particular whether this family is a basis, and the existence and properties of the unique solution of the associated boundary value problem. When such a unique solution exists, we consider its representation as a complex contour integral that is obtained using a transform method recently proposed by Fokas and one of the authors. The analyticity properties of the integrand in this representation are crucial for studying the spectral theory of the associated operator.
Resumo:
Our objective was to investigate whether the presence of Glu298Asp polymorphism in the endothelial NO synthase (eNOS) gene differentially affects the postprandial blood pressure response to dietary nitrate-rich beetroot bread. A randomised, single-blind, controlled, crossover acute pilot study was performed in 14 healthy men (mean age: 34±9 years) who were retrospectively genotyped for Glu298Asp polymorphism (7GG; T carriers 7). Volunteers were randomised to receive 200 g beetroot-enriched bread (1.1 mmol nitrate) or control bread (no beetroot; 0.01 mmol nitrate) on two separate occasions 10 days apart. Baseline and incremental area under the curve of blood pressure and NOx (nitrate/nitrite) were measured for a 6-h postprandial period. A treatment × genotype interaction was observed for diastolic blood pressure (P<0.02), which was significantly lower in T carriers (P<0.01) after consumption of beetroot bread compared with control bread. No significant differences were observed in the GG group. The beneficial diastolic blood pressure reduction was observed only in the T carriers of the Glu298Asp polymorphism in the eNOS gene after consumption of nitrate-rich beetroot bread. These data require confirmation in a larger population group.
Resumo:
Past studies have revealed that encountering negative events interferes with cognitive processing of subsequent stimuli. The present study investigates whether negative events affect semantic and perceptual processing differently. Presentation of negative pictures produced slower reaction times than neutral or positive pictures in tasks that require semantic processing, such as natural or man-made judgments about drawings of objects, commonness judgments about objects, and categorical judgments about pairs of words. In contrast, negative picture presentation did not slow down judgments in subsequent perceptual processing (e.g., color judgments about words, size judgments about objects). The subjective arousal level of negative pictures did not modulate the interference effects on semantic or perceptual processing. These findings indicate that encountering negative emotional events interferes with semantic processing of subsequent stimuli more strongly than perceptual processing, and that not all types of subsequent cognitive processing are impaired by negative events.
Resumo:
The ability to change an established stimulus–behavior association based on feedback is critical for adaptive social behaviors. This ability has been examined in reversal learning tasks, where participants first learn a stimulus–response association (e.g., select a particular object to get a reward) and then need to alter their response when reinforcement contingencies change. Although substantial evidence demonstrates that the OFC is a critical region for reversal learning, previous studies have not distinguished reversal learning for emotional associations from neutral associations. The current study examined whether OFC plays similar roles in emotional versus neutral reversal learning. The OFC showed greater activity during reversals of stimulus–outcome associations for negative outcomes than for neutral outcomes. Similar OFC activity was also observed during reversals involving positive outcomes. Furthermore, OFC activity is more inversely correlated with amygdala activity during negative reversals than during neutral reversals. Overall, our results indicate that the OFC is more activated by emotional than neutral reversal learning and that OFC's interactions with the amygdala are greater for negative than neutral reversal learning.
Resumo:
We consider a three dimensional system consisting of a large number of small spherical particles, distributed in a range of sizes and heights (with uniform distribution in the horizontal direction). Particles move vertically at a size-dependent terminal velocity. They are either allowed to merge whenever they cross or there is a size ratio criterion enforced to account for collision efficiency. Such a system may be described, in mean field approximation, by the Smoluchowski kinetic equation with a differential sedimentation kernel. We obtain self-similar steady-state and time-dependent solutions to the kinetic equation, using methods borrowed from weak turbulence theory. Analytical results are compared with direct numerical simulations (DNS) of moving and merging particles, and a good agreement is found.
Resumo:
Aims. Protein kinases are potential therapeutic targets for heart failure, but most studies of cardiac protein kinases derive from other systems, an approach that fails to account for specific kinases expressed in the heart and the contractile cardiomyocytes. We aimed to define the cardiomyocyte kinome (i.e. the protein kinases expressed in cardiomyocytes) and identify kinases with altered expression in human failing hearts. Methods and Results. Expression profiling (Affymetrix microarrays) detected >400 protein kinase mRNAs in rat neonatal ventricular myocytes (NVMs) and/or adult ventricular myocytes (AVMs), 32 and 93 of which were significantly upregulated or downregulated (>2-fold), respectively, in AVMs. Data for AGC family members were validated by qPCR. Proteomics analysis identified >180 cardiomyocyte protein kinases, with high relative expression of mitogen-activated protein kinase cascades and other known cardiomyocyte kinases (e.g. CAMKs, cAMP-dependent protein kinase). Other kinases are poorly-investigated (e.g. Slk, Stk24, Oxsr1). Expression of Akt1/2/3, BRaf, ERK1/2, Map2k1, Map3k8, Map4k4, MST1/3, p38-MAPK, PKCδ, Pkn2, Ripk1/2, Tnni3k and Zak was confirmed by immunoblotting. Relative to total protein, Map3k8 and Tnni3k were upregulated in AVMs vs NVMs. Microarray data for human hearts demonstrated variation in kinome expression that may influence responses to kinase inhibitor therapies. Furthermore, some kinases were upregulated (e.g. NRK, JAK2, STK38L) or downregulated (e.g. MAP2K1, IRAK1, STK40) in human failing hearts. Conclusions. This characterization of the spectrum of kinases expressed in cardiomyocytes and the heart (cardiomyocyte and cardiac kinomes) identified novel kinases, some of which are differentially expressed in failing human hearts and could serve as potential therapeutic targets.