82 resultados para Diatomaceae, Fossil.
Resumo:
The objective biomization method developed by Prentice et al. (1996) for Europe was extended using modern pollen samples from Beringia and then applied to fossil pollen data to reconstruct palaeovegetation patterns at 6000 and 18,000 14C yr bp. The predicted modern distribution of tundra, taiga and cool conifer forests in Alaska and north-western Canada generally corresponds well to actual vegetation patterns, although sites in regions characterized today by a mosaic of forest and tundra vegetation tend to be preferentially assigned to tundra. Siberian larch forests are delimited less well, probably due to the extreme under-representation of Larix in pollen spectra. The biome distribution across Beringia at 6000 14C yr bp was broadly similar to today, with little change in the northern forest limit, except for a possible northward advance in the Mackenzie delta region. The western forest limit in Alaska was probably east of its modern position. At 18,000 14C yr bp the whole of Beringia was covered by tundra. However, the importance of the various plant functional types varied from site to site, supporting the idea that the vegetation cover was a mosaic of different tundra types.
Resumo:
Fossil pollen data supplemented by tree macrofossil records were used to reconstruct the vegetation of the Former Soviet Union and Mongolia at 6000 years. Pollen spectra were assigned to biomes using the plant-functional-type method developed by Prentice et al. (1996). Surface pollen data and a modern vegetation map provided a test of the method. This is the first time such a broad-scale vegetation reconstruction for the greater part of northern Eurasia has been attempted with objective techniques. The new results confirm previous regional palaeoenvironmental studies of the mid-Holocene while providing a comprehensive synopsis and firmer conclusions. West of the Ural Mountains temperate deciduous forest extended both northward and southward from its modern range. The northern limits of cool mixed and cool conifer forests were also further north than present. Taiga was reduced in European Russia, but was extended into Yakutia where now there is cold deciduous forest. The northern limit of taiga was extended (as shown by increased Picea pollen percentages, and by tree macrofossil records north of the present-day forest limit) but tundra was still present in north-eastern Siberia. The boundary between forest and steppe in the continental interior did not shift substantially, and dry conditions similar to present existed in western Mongolia and north of the Aral Sea.
Resumo:
Biomization provides an objective and robust method of assigning pollen spectra to biomes so that pollen data can be mapped and compared directly with the output of biomgeographic models. We have tested the applicability of this procedure, originally developed for Europe, to assign modern surface samples from China to biomes. The procedure successfully delineated the major vegetation types of China. When the same procedure was applied to fossil pollen samples for 6000 years ago, the reconstructions showed systematic differences from present, consistent with previous interpretations of vegetation changes since the mid-Holocene. In eastern China, the forest zones were systematically shifted northwards, such that cool mixed forests displaced taiga in northeastern China, while broad-leaved evergreen forest extended c. 300 km and temperate deciduous forestc. 500–600 km beyond their present northern limits. In northwestern China, the area of desert and steppe vegetation was reduced compared to present. On the Tibetan Plateau, forest vegetation extended to higher elevations than today and the area of tundra was reduced. These shifts in biome distributions imply significant changes in climate since 6000 years ago that can be interpreted qualitatively as a response to orbital forcing and its secondary effects on the Asian monsoon.
Resumo:
European grassland-based livestock production systems face the challenge of producing more meat and milk to meet increasing world demands and to achieve this using fewer resources. Legumes offer great potential for achieving these objectives. They have numerous features that can act together at different stages in the soil–plant–animal–atmosphere system, and these are most effective in mixed swards with a legume proportion of 30–50%. The resulting benefits include reduced dependence on fossil energy and industrial N-fertilizer, lower quantities of harmful emissions to the environment (greenhouse gases and nitrate), lower production costs, higher productivity and increased protein self-sufficiency. Some legume species offer opportunities for improving animal health with less medication, due to the presence of bioactive secondary metabolites. In addition, legumes may offer an adaptation option to rising atmospheric CO2 concentrations and climate change. Legumes generate these benefits at the level of the managed land-area unit and also at the level of the final product unit. However, legumes suffer from some limitations, and suggestions are made for future research to exploit more fully the opportunities that legumes can offer. In conclusion, the development of legume-based grassland–livestock systems undoubtedly constitutes one of the pillars for more sustainable and competitive ruminant production systems, and it can be expected that forage legumes will become more important in the future.
Resumo:
Inter-bedded volcanic and organic sediments from Erazo (Ecuador) indicate the presence of four different forest assemblages on the eastern Andean flank during the middle Pleistocene. Radiometric dates (40Ar–39Ar) obtained fromthe volcanic ash indicate that deposition occurred between 620,000 and 192,000 years ago. Examination of the organic sediment composition and the fossil pollen, wood and charcoal it contains provides insight into depositional environment, vegetation assemblage and fire history. The high organic content and abundance of macro fossils found throughout the sediment suggest that during the period of deposition the local environment was either a swamp or a shallow water body. The correlation of fire activity (peaks in charcoal abundance) with volcanic ash deposits through most of the record suggests that volcanoes were the main source of ignition. The low abundance of grass (typically b10%) throughout the sedimentary sequence along with the low abundance of other taxa indicative of open vegetation suggests the persistence of forest at Erazo. Four types of forest assemblage were identified (with the first taxa as the most dominant): i) Alnus-Arecaceae, ii) Miconia- Melastomataceae/Combretaceae-Moraceae/Urticaceae, iii) Arecaceae-Alnus, and iv) Podocarpus with Oreopanax sp. and Melastomataceae/Combretaceae. Changes in the forest floristic composition indicate high vegetation turnover and reassortment of taxa between upper and lower montane forests during the middle Pleistocene as well as the persistence of forest cover.
Resumo:
Puyasena et al. question our interpretation of climate-driven vegetation change on the Andean flank in western Amazonia during the middle Pleistocene and suggest that the use of Podocarpus spp. as a proxy of past climate change should be reassessed. We defend our assertion that vegetation change at the Erazo study site was predominantly driven by climate change due to concomitant changes recorded by multiple taxa in the fossil record.
Resumo:
A reconstruction of past environmental change from Ecuador reveals the response of lower montane forest on the Andean flank in western Amazonia to glacial-interglacial global climate change. Radiometric dating of volcanic ash indicates that deposition occurred ~324,000 to 193,000 years ago during parts of Marine Isotope Stages 9, 7, and 6. Fossil pollen and wood preserved within organic sediments suggest that the composition of the forest altered radically in response to glacial-interglacial climate change. The presence of Podocarpus macrofossils ~1000 meters below the lower limit of their modern distribution indicates a relative cooling of at least 5°C during glacials and persistence of wet conditions. Interglacial deposits contain thermophilic palms suggesting warm and wet climates. Hence, global temperature change can radically alter vegetation communities and biodiversity in this region.
Resumo:
During the winter of 2013/14, much of the UK experienced repeated intense rainfall events and flooding. This had a considerable impact on property and transport infrastructure. A key question is whether the burning of fossil fuels is changing the frequency of extremes, and if so to what extent. We assess the scale of the winter flooding before reviewing a broad range of Earth system drivers affecting UK rainfall. Some drivers can be potentially disregarded for these specific storms whereas others are likely to have increased their risk of occurrence. We discuss the requirements of hydrological models to transform rainfall into river flows and flooding. To determine any general changing flood risk, we argue that accurate modelling needs to capture evolving understanding of UK rainfall interactions with a broad set of factors. This includes changes to multiscale atmospheric, oceanic, solar and sea-ice features, and land-use and demographics. Ensembles of such model simulations may be needed to build probability distributions of extremes for both pre-industrial and contemporary concentration levels of atmospheric greenhouse gases.
Resumo:
Observations from the EISCAT VHF incoherent scatter radar system in northern Norway, during a run of the common programme CP-4, reveal a series of polewardpropagating F-region electron density enhancements in the pre-noon sector on 23 November 1999. These plasma density features, which are observed under conditions of a strongly southward interplanetary magnetic field, exhibit a recurrence rate of under 10 min and appear to emanate from the vicinity of the open/closed field-line boundary from where they travel into the polar cap; this is suggestive of their being an ionospheric response to transient reconnection at the dayside magnetopause (flux transfer events). Simultaneous with the density structures detected by the VHF radar, polewardmoving radar auroral forms (PMRAFs) are observed by the Finland HF coherent scatter radar. It is thought that PMRAFs, which are commonly observed near local noon by HF radars, are also related to flux transfer events, although the specific mechanism for the generation of the field-aligned irregularities within such features is not well understood. The HF observations suggest, that for much of their existence, the PMRAFs trace fossil signatures of transient reconnection rather than revealing the footprint of active reconnection itself; this is evidenced not least by the fact that the PMRAFs become narrower in spectral width as they evolve away from the region of more classical, broad cusp scatter in which they originate. Interpretation of the HF observations with reference to the plasma parameters diagnosed by the incoherent scatter radar suggests that as the PMRAFs migrate away from the reconnection site and across the polar cap, entrained in the ambient antisunward flow, the irregularities therein are generated by the presence of gradients in the electron density, with these gradients having been formed through structuring of the ionosphere in the cusp region in response to transient reconnection.
Resumo:
During the interval between 8:00-9:30 on 14 January 2001, the four Cluster spacecraft were moving from the central magnetospheric lobe, through the dusk sector mantle, on their way towards intersecting the magnetopause near 15:00 MLT and 15:00 UT. Throughout this interval, the EIS-CAT Svalbard Radar (ESR) at Longyearbyen observed a series of poleward-moving transient events of enhanced F-region plasma concentration ("polar cap patches"), with a repetition period of the order of 10 min. Allowing for the estimated solar wind propagation delay of 75 ( 5) min, the interplanetary magnetic field (IMF) had a southward component during most of the interval. The magnetic footprint of the Cluster spacecraft, mapped to the ionosphere using the Tsyganenko T96 model (with input conditions prevailing during this event), was to the east of the ESR beams. Around 09:05 UT, the DMSP-F12 satellite flew over the ESR and showed a sawtooth cusp ion dispersion signature that also extended into the electrons on the equatorward edge of the cusp, revealing a pulsed magnetopause reconnection. The consequent enhanced ionospheric flow events were imaged by the SuperDARN HF backscatter radars. The average convection patterns (derived using the AMIE technique on data from the magnetometers, the EISCAT and SuperDARN radars, and the DMSP satellites) show that the associated poleward-moving events also convected over the predicted footprint of the Cluster spacecraft. Cluster observed enhancements in the fluxes of both electrons and ions. These events were found to be essentially identical at all four spacecraft, indicating that they had a much larger spatial scale than the satellite separation of the order of 600 km. Some of the events show a correspondence between the lowest energy magnetosheath electrons detected by the PEACE instrument on Cluster (10-20 eV) and the topside ionospheric enhancements seen by the ESR (at 400-700 km). We suggest that a potential barrier at the magnetopause, which prevents the lowest energy electrons from entering the magnetosphere, is reduced when and where the boundary-normal magnetic field is enhanced and that the observed polar cap patches are produced by the consequent enhanced precipitation of the lowest energy electrons, making them and the low energy electron precipitation fossil remnants of the magnetopause reconnection rate pulses.
Resumo:
A 24 h period of observations by the EISCAT radar and other ground-based instrumentation is used to study the role of plasma convection in determining the morphology of the high-latitude F-region during winter. It is suggested that, in the afternoon sector of the polar convection pattern, rapid zonal (westward) flows caused low F-region electron densities due to an extension of the mid-latitude trough far into the sunlit hemisphere. Low densities on the dawn side prior to 0600 UT may also have been due to a trough-like feature. Although the generation mechanism is unclear, the trough may be the fossil remnant of a substorm. Around midnight, high F-region densities were seen, probably due to plasma flow emerging from the cap through soft particle precipitation in the auroral oval. Two substorms occurred at times when the radar was south of the auroral oval. Both caused enhanced convection speeds, a swing to equatorward flow, enhanced E-region densities and a depleted F-region. The first was seen as a Westward Travelling Surge, and the swing to purely southward flow which followed the surge front did not return to westward flows until 80–110 min later. The Harang discontinuity was observed co-rotating eastwards between the substorms, 65 ± 30 min before the separatrix between the dawn and dusk convection cells.
Resumo:
Palaeoclimates across Europe for 6000 y BP were estimated from pollen data using the modern pollen analogue technique constrained with lake-level data. The constraint consists of restricting the set of modern pollen samples considered as analogues of the fossil samples to those locations where the implied change in annual precipitation minus evapotranspiration (P–E) is consistent with the regional change in moisture balance as indicated by lakes. An artificial neural network was used for the spatial interpolation of lake-level changes to the pollen sites, and for mapping palaeoclimate anomalies. The climate variables reconstructed were mean temperature of the coldest month (T c ), growing degree days above 5 °C (GDD), moisture availability expressed as the ratio of actual to equilibrium evapotranspiration (α), and P–E. The constraint improved the spatial coherency of the reconstructed palaeoclimate anomalies, especially for P–E. The reconstructions indicate clear spatial and seasonal patterns of Holocene climate change, which can provide a quantitative benchmark for the evaluation of palaeoclimate model simulations. Winter temperatures (T c ) were 1–3 K greater than present in the far N and NE of Europe, but 2–4 K less than present in the Mediterranean region. Summer warmth (GDD) was greater than present in NW Europe (by 400–800 K day at the highest elevations) and in the Alps, but >400 K day less than present at lower elevations in S Europe. P–E was 50–250 mm less than present in NW Europe and the Alps, but α was 10–15% greater than present in S Europe and P–E was 50–200 mm greater than present in S and E Europe.
Resumo:
Fossil pollen, ancient lake sediments and archaeological evidence from Africa indicate that the Sahel and Sahara regions were considerably wetter than today during the early to middle Holocene period, about 12,000 to 5,000 years ago1–4. Vegetation associated with the modern Sahara/Sahel boundary was about 5° farther north, and there were more and larger lakes between 15 and 30° N. Simulations with climate models have shown that these wetter conditions were probably caused by changes in Earth's orbital parameters that increased the amplitude of the seasonal cycle of solar radiation in the Northern Hemisphere, enhanced the land-ocean temperature contrast, and thereby strengthened the African summer monsoon5–7. However, these simulations underestimated the consequent monsoon enhancement as inferred from palaeorecords4. Here we use a climate model to show that changes in vegetation and soil may have increased the climate response to orbital forcing. We find that replacing today's orbital forcing with that of the mid-Holocene increases summer precipitation by 12% between 15 and 22° N. Replacing desert with grassland, and desert soil with more loamy soil, further enhances the summer precipitation (by 6 and 10% respectively), giving a total precipitation increase of 28%. When the simulated climate changes are applied to a biome model, vegetation becomes established north of the current Sahara/Sahel boundary, thereby shrinking the area of the Sahara by 11% owing to orbital forcing alone, and by 20% owing to the combined influence of orbital forcing and the prescribed vegetation and soil changes. The inclusion of the vegetation and soil feedbacks thus brings the model simulations and palaeovegetation observations into closer agreement.
Resumo:
Fossil fuel combustion and deforestation have resulted in a rapid increase in atmospheric [CO2] since the 1950’s, and it will reach about 550 μmol mol−1 in 2050. Field experiments were conducted at the Free-air CO2 Enrichment facility in Beijing, China. Winter wheat was grown to maturity under elevated [CO2] (550 ± 17 μmol mol−1) and ambient [CO2] (415 ± 16 μmol mol−1), with high nitrogen (N) supply (HN, 170 kg N ha−1) and low nitrogen supply (LN, 100 kg N ha−1) for three growing seasons from 2007 to 2010. Elevated [CO2] increased wheat grain yield by 11.4% across the three years. [CO2]-induced yield enhancements were 10.8% and 11.9% under low N and high N supply, respectively. Nitrogen accumulation under elevated [CO2] was increased by 12.9% and 9.2% at the half-way anthesis and ripening stage across three years, respectively. Winter wheat had higher nitrogen demand under elevated [CO2] than ambient [CO2], and grain yield had a stronger correlation with plant N uptake after anthesis than before anthesis at high [CO2]. Our results suggest that regulating on the N application rate and time, is likely important for sustainable grain production under future CO2 climate.
Resumo:
In the tropics, geochemical records from stalagmites have so far mainly been used to qualitatively reconstruct changes in precipitation, but several new methods to reconstruct past temperatures from stalagmite material have emerged recently: i) liquid–vapor homogenization of fluid inclusion water ii) noble gas concentrations in fluid inclusion water, iii) the partitioning of oxygen isotopes between fluid inclusion water and calcite, and iv) the abundance of the 13C18O16O (‘clumped’) isotopologue in calcite. We present, for the first time, a direct comparison of these four paleo-thermometers by applying them to a fossil stalagmite covering nearly two glacial–interglacial cycles (Marine Isotope Stages (MIS) 12–9) and to two modern stalagmites, all from northern Borneo. The temperature estimates from the different methods agree in most cases within errors for both the old and recent samples; reconstructed formation temperatures of the recent samples match within 2-sigma errors with measured cave temperatures. However, slight but systematic deviations are observed between noble gas and liquid–vapor homogenization temperatures. Whereas the temperature sensitivity of fluid inclusion δ18O and clumped isotopes is currently debated, we find that the calibration of Tremaine et al. (2011) for fluid inclusion δ18O and a synthetic calcite-based clumped isotope calibration (Ziegler et al., in prep.) yield temperature estimates consistent with the other methods. All methods (with the potential exception of clumped isotopes) show excellent agreement on the amplitude of glacial–interglacial temperature change, indicating temperature shifts of 4–5 °C. This amplitude is similar to the amplitude of Mg/Ca-based regional sea surface temperature records, when correcting for sea level driven changes in cave elevation. Our reconstruction of tropical temperature evolution over the time period from 440 to 320 thousand years ago (ka) adds support to the view that climate sensitivity to varying greenhouse forcing is substantial also in the deep tropics.