117 resultados para DOUBLE DISSOCIATION
Resumo:
Background/Objectives: Prebiotics have attracted interest for their ability to positively affect the colonic microbiota composition, thus increasing resistance to infection and diarrhoeal disease. This study assessed the effectiveness of a prebiotic galacto-oligosaccharide mixture (B-GOS) on the severity and/or incidence of travellers' diarrhoea (TD) in healthy subjects. Subjects/Methods: The study was a placebo-controlled, randomized, double blind of parallel design in 159 healthy volunteers, who travelled for minimum of 2 weeks to a country of low or high risk for TD. The investigational product was the B-GOS and the placebo was maltodextrin. Volunteers were randomized into groups with an equal probability of receiving either the prebiotic or placebo. The protocol comprised of a 1 week pre-holiday period recording bowel habit, while receiving intervention and the holiday period. Bowel habit included the number of bowel movements and average consistency of the stools as well as occurrence of abdominal discomfort, flatulence, bloating or vomiting. A clinical report was completed in the case of diarrhoeal incidence. A post-study questionnaire was also completed by all subjects on their return. Results: Results showed significant differences between the B-GOS and the placebo group in the incidence (P<0.05) and duration (P<0.05) of TD. Similar findings occurred on abdominal pain (P<0.05) and the overall quality of life assessment (P<0.05). Conclusions: Consumption of the tested galacto-oligosaccharide mixture showed significant potential in preventing the incidence and symptoms of TD.
Resumo:
There is growing interest in the use of inulins as substrates for the selective growth of beneficial gut bacteria such as bifidobacteria and lactobacilli because recent studies have established that their prebiotic effect is linked to several health benefits. In the present study, the impact of a very-long-chain inulin (VLCI), derived from globe artichoke (Cynara scolymus), on the human intestinal microbiota compared with maltodextrin was determined. A double-blind, cross-over study was carried out in thirty-two healthy adults who were randomised into two groups and consumed 10 g/d of either VLCI or maltodextrin, for two 3-week study periods, separated by a 3-week washout period. Numbers of faecal bifidobacteria and lactobacilli were significantly higher upon VLCI ingestion compared with the placebo. Additionally, levels of Atopobium group significantly increased, while Bacteroides–Prevotella numbers were significantly reduced. No significant changes in faecal SCFA concentrations were observed. There were no adverse gastrointestinal symptoms apart from a significant increase in mild and moderate bloating upon VLCI ingestion. These observations were also confirmed by in vitro gas production measurements. In conclusion, daily consumption of VLCI extracted from globe artichoke exerted a pronounced prebiotic effect on the human faecal microbiota composition and was well tolerated by all volunteers.
Resumo:
The Mdm2 ubiquitin ligase is an important regulator of p53 abundance and p53-dependent apoptosis. Mdm2 expression is frequently regulated by a p53 Mdm2 autoregulatory loop whereby p53 stimulates Mdm2 expression and hence its own degradation. Although extensively studied in cell lines, relatively little is known about Mdm2 expression in heart where oxidative stress (exacerbated during ischemia-reperfusion) is an important pro-apoptotic stimulus. We demonstrate that Mdm2 transcript and protein expression are induced by oxidative stress (0.2 mm H(2)O(2)) in neonatal rat cardiac myocytes. In other cells, constitutive Mdm2 expression is regulated by the P1 promoter (5' to exon 1), with inducible expression regulated by the P2 promoter (in intron 1). In myocytes, H(2)O(2) increased Mdm2 expression from the P2 promoter, which contains two p53-response elements (REs), one AP-1 RE, and two Ets REs. H(2)O(2) did not detectably increase expression of p53 mRNA or protein but did increase expression of several AP-1 transcription factors. H(2)O(2) increased binding of AP-1 proteins (c-Jun, JunB, JunD, c-Fos, FosB, and Fra-1) to an Mdm2 AP-1 oligodeoxynucleotide probe, and chromatin immunoprecipitation assays showed it increased binding of c-Jun or JunB to the P2 AP-1 RE. Finally, antisense oligonucleotide-mediated reduction of H(2)O(2)-induced Mdm2 expression increased caspase 3 activation. Thus, increased Mdm2 expression is associated with transactivation at the P2 AP-1 RE (rather than the p53 or Ets REs), and Mdm2 induction potentially represents a cardioprotective response to oxidative stress.
Resumo:
Translationally controlled tumour protein (TCTP) is a highly conserved protein present in all eukaryotic organisms. Various cellular functions and molecular interactions have been ascribed to this protein, many related to its growth-promoting and antiapoptotic properties. TCTP levels are highly regulated in response to various cellular stimuli and stresses. We have shown recently that the double-stranded RNA-dependent protein kinase, PKR, is involved in translational regulation of TCTP. Here we extend these studies by demonstrating that TCTP is downregulated in response to various proapoptotic treatments, in particular agents that induce Ca++ stress, in a PKR-dependent manner. This regulation requires phosphorylation of protein synthesis factor eIF2α. Since TCTP has been characterized as an antiapoptotic and Ca++-binding protein, we asked whether it is involved in protecting cells from Ca++-stress-induced apoptosis. Overexpression of TCTP partially protects cells against thapsigargin-induced apoptosis, as measured using caspase-3 activation assays, a nuclear fragmentation assay, using fluorescence-activated cell sorting analysis, and time-lapse video microscopy. TCTP also protects cells against the proapoptotic effects of tunicamycin and etoposide, but not against those of arsenite. Our results imply that cellular TCTP levels influence sensitivity to apoptosis and that PKR may exert its proapoptotic effects at least in part through downregulation of TCTP via eIF2α phosphorylation.
Resumo:
A polystyrene-block-poly(ferrocenylethylmethylsilane) diblock copolymer, displaying a double-gyroid morphology when self-assembled in the solid state, has been prepared with a PFEMS volume fraction phi(PFMS)=0.39 and a total molecular weight of 64 000 Da by sequential living anionic polymerisation. A block copolymer with a metal-containing block with iron and silicon in the main chain was selected due to its plasma etch resistance compared to the organic block. Self-assembly of the diblock copolymer in the bulk showed a stable, double-gyroid morphology as characterised by TEM. SAXS confirmed that the structure belonged to the Ia3d space group.
Resumo:
BACKGROUND: The absorption of cocoa flavanols in the small intestine is limited, and the majority of the flavanols reach the large intestine where they may be metabolized by resident microbiota. OBJECTIVE: We assessed the prebiotic potential of cocoa flavanols in a randomized, double-blind, crossover, controlled intervention study. DESIGN: Twenty-two healthy human volunteers were randomly assigned to either a high-cocoa flavanol (HCF) group (494 mg cocoa flavanols/d) or a low-cocoa flavanol (LCF) group (23 mg cocoa flavanols/d) for 4 wk. This was followed by a 4-wk washout period before volunteers crossed to the alternant arm. Fecal samples were recovered before and after each intervention, and bacterial numbers were measured by fluorescence in situ hybridization. A number of other biochemical and physiologic markers were measured. RESULTS: Compared with the consumption of the LCF drink, the daily consumption of the HCF drink for 4 wk significantly increased the bifidobacterial (P < 0.01) and lactobacilli (P < 0.001) populations but significantly decreased clostridia counts (P < 0.001). These microbial changes were paralleled by significant reductions in plasma triacylglycerol (P < 0.05) and C-reactive protein (P < 0.05) concentrations. Furthermore, changes in C-reactive protein concentrations were linked to changes in lactobacilli counts (P < 0.05, R(2) = -0.33 for the model). These in vivo changes were closely paralleled by cocoa flavanol-induced bacterial changes in mixed-batch culture experiments. CONCLUSION: This study shows, for the first time to our knowledge, that consumption of cocoa flavanols can significantly affect the growth of select gut microflora in humans, which suggests the potential prebiotic benefits associated with the dietary inclusion of flavanol-rich foods. This trial was registered at clinicaltrials.gov as NCT01091922.
Resumo:
NMR spectroscopy has been used to investigate the conformational effects of single and two consecutive 3′-S-phosphorothiolate modifications within a deoxythymidine trinucleotide. The presence of a single 3′-phosphorothioate modification shifts the conformation of the sugar ring it is attached to, from a mainly south to north pucker; this effect is also transmitted to the 3′-neighbour deoxyribose. This transmission is thought to be caused by favourable stacking of the heterocyclic bases. Similar observations have been made previously by this group. When two adjacent modifications are present, the conformations of the attached deoxyribose rings are again shifted almost completely to the north, however, there is no transmission to the 3′ deoxyribose ring. Base proton chemical shift analysis and molecular modelling have been used to aid elucidation of the origin of this feature. The observation for the dimodified sequence is consistent with our previously reported results for a related system in which spaced modifications are more thermodynamically stable than consecutive ones.