73 resultados para Cortex cerebral
Social equality in the number of choice options is represented in the ventromedial prefrontal cortex
Resumo:
A distinct aspect of the sense of fairness in humans is that we care not only about equality in material rewards but also about equality in non-material values. One such value is the opportunity to choose freely among many options, often regarded as a fundamental right to economic freedom. In modern developed societies, equal opportunities in work, living, and lifestyle are enforced by anti-discrimination laws. Despite the widespread endorsement of equal opportunity, no studies have explored how people assign value to it. We used functional magnetic resonance imaging to identify the neural substrates for subjective valuation of equality in choice opportunity. Participants performed a two-person choice task in which the number of choices available was varied across trials independently of choice outcomes. By using this procedure, we manipulated the degree of equality in choice opportunity between players and dissociated it from the value of reward outcomes and their equality. We found that activation in the ventromedial prefrontal cortex tracked the degree to which the number of options between the two players was equal. In contrast, activation in the ventral striatum tracked the number of options available to participants themselves but not the equality between players. Our results demonstrate that the vmPFC, a key brain region previously implicated in the processing of social values, is also involved in valuation of equality in choice opportunity between individuals. These findings may provide valuable insight into the human ability to value equal opportunity, a characteristic long emphasized in politics, economics, and philosophy.
Resumo:
Recent experimental evidence suggests a finer genetic, structural and functional subdivision of the layers which form a cortical column. The classical layer II/III (LII/III) of rodent neocortex integrates ascending sensory information with contextual cortical information for behavioral read-out. We systematically investigated to which extent regular-spiking supragranular pyramidal neurons, located at different depths within the cortex, show different input-output connectivity patterns. Combining glutamate-uncaging with whole-cell recordings and biocytin filling, we revealed a novel cellular organization of LII/III: (i) “Lower LII/III” pyramidal cells receive a very strong excitatory input from lemniscal LIV and much fewer inputs from paralemniscal LVa. They project to all layers of the home column, including a feedback projection to LIV whereas transcolumnar projections are relatively sparse. (ii) “Upper LII/III” pyramidal cells also receive their strongest input from LIV, but in addition, a very strong and dense excitatory input from LVa. They project extensively to LII/III as well as LVa and Vb of their home and neighboring columns, (iii) “Middle LII/III” pyramidal cell show an intermediate connectivity phenotype that stands in many ways in-between the features described for lower versus upper LII/III. “Lower LII/III” intracolumnarly segregates and transcolumnarly integrates lemniscal information whereas “upper LII/III” seems to integrate lemniscal with paralemniscal information. This suggests a finegrained functional subdivision of the supragranular compartment containing multiple circuits without any obvious cytoarchitectonic, other structural or functional correlate of a laminar border in rodent barrel cortex.
Resumo:
In probabilistic decision tasks, an expected value (EV) of a choice is calculated, and after the choice has been made, this can be updated based on a temporal difference (TD) prediction error between the EV and the reward magnitude (RM) obtained. The EV is measured as the probability of obtaining a reward x RM. To understand the contribution of different brain areas to these decision-making processes, functional magnetic resonance imaging activations related to EV versus RM (or outcome) were measured in a probabilistic decision task. Activations in the medial orbitofrontal cortex were correlated with both RM and with EV and confirmed in a conjunction analysis to extend toward the pregenual cingulate cortex. From these representations, TD reward prediction errors could be produced. Activations in areas that receive from the orbitofrontal cortex including the ventral striatum, midbrain, and inferior frontal gyrus were correlated with the TD error. Activations in the anterior insula were correlated negatively with EV, occurring when low reward outcomes were expected, and also with the uncertainty of the reward, implicating this region in basic and crucial decision-making parameters, low expected outcomes, and uncertainty.
Resumo:
Background and Purpose. In rat middle cerebral arteries, endothelium-dependent hyperpolarization (EDH) is mediated by activation of calcium-activated potassium(KCa) channels specifically KCa2.3 and KCa3.1. Lipoxygenase (LOX) products function as endothelium-derived hyperpolarizing factors (EDHFs) in rabbit arteries by stimulating KCa2.3. We investigated if LOX products contribute to EDH in rat cerebral arteries. Methods. Arachidonic acid (AA) metabolites produced in middle cerebral arteries were measured using HPLC and LC/MS. Vascular tension and membrane potential responses to SLIGRL were simultaneously recorded using wire myography and intracellular microelectrodes. Results. SLIGRL, an agonist at PAR2 receptors, caused EDH that was inhibited by a combination of KCa2.3 and KCa3.1 blockade. Non-selective LOX-inhibition reduced EDH, whereas inhibition of 12-LOX had no effect. Soluble epoxide hydrolase (sEH) inhibition enhanced the KCa2.3 component of EDH. Following NO synthase (NOS) inhibition, the KCa2.3 component of EDH was absent. Using HPLC, middle cerebral arteries metabolized 14C-AA to 15- and 12-LOX products under control conditions. With NOS inhibition, there was little change in LOX metabolites, but increased F-type isoprostanes. 8-iso-PGF2α inhibited the KCa2.3 component of EDH. Conclusions. LOX metabolites mediate EDH in rat middle cerebral arteries. Inhibition of sEH increases the KCa2.3 component of EDH. Following NOS inhibition,loss of KCa2.3 function is independent of changes in LOX production or sEH inhibition but due to increased isoprostane production and subsequent stimulation of TP receptors. These findings have important implications in diseases associated with loss of NO signaling such as stroke; where inhibition of sEH and/or isoprostane formation may of benefit.
Resumo:
One potential source of heterogeneity within autism spectrum conditions (ASC) is language development and ability. In 80 high-functioning male adults with ASC, we tested if variations in developmental and current structural language are associated with current neuroanatomy. Groups with and without language delay differed behaviorally in early social reciprocity, current language, but not current autistic features. Language delay was associated with larger total gray matter (GM) volume, smaller relative volume at bilateral insula, ventral basal ganglia, and right superior, middle, and polar temporal structures, and larger relative volume at pons and medulla oblongata in adulthood. Despite this heterogeneity, those with and without language delay showed significant commonality in morphometric features when contrasted with matched neurotypical individuals (n = 57). In ASC, better current language was associated with increased GM volume in bilateral temporal pole, superior temporal regions, dorsolateral fronto-parietal and cerebellar structures, and increased white matter volume in distributed frontal and insular regions. Furthermore, current language–neuroanatomy correlation patterns were similar across subgroups with or without language delay. High-functioning adult males with ASC show neuroanatomical variations associated with both developmental and current language characteristics. This underscores the importance of including both developmental and current language as specifiers for ASC, to help clarify heterogeneity.
Resumo:
BACKGROUND: Neural responses to rewarding food cues are significantly different in the fed vs. fasted (>8 h food-deprived) state. However, the effect of eating to satiety after a shorter (more natural) intermeal interval on neural responses to both rewarding and aversive cues has not been examined. OBJECTIVE: With the use of a novel functional magnetic resonance imaging (fMRI) task, we investigated the effect of satiation on neural responses to both rewarding and aversive food tastes and pictures. DESIGN: Sixteen healthy participants (8 men, 8 women) were scanned on 2 separate test days, before and after eating a meal to satiation or after not eating for 4 h (satiated vs. premeal). fMRI blood oxygen level-dependent (BOLD) signals to the sight and/or taste of the stimuli were recorded. RESULTS: A whole-brain cluster-corrected analysis (P < 0.05) showed that satiation attenuated the BOLD response to both stimulus types in the ventromedial prefrontal cortex (vmPFC), orbitofrontal cortex, nucleus accumbens, hypothalamus, and insula but increased BOLD activity in the dorsolateral prefrontal cortex (dlPFC; local maxima corrected to P ≤ 0.001). A psychophysiological interaction analysis showed that the vmPFC was more highly connected to the dlPFC when individuals were exposed to food stimuli when satiated than when not satiated. CONCLUSIONS: These results suggest that natural satiation attenuates activity in reward-related brain regions and increases activity in the dlPFC, which may reflect a "top down" cognitive influence on satiation. This trial was registered at clinicaltrials.gov as NCT02298049.
Resumo:
After a person chooses between two items, preference for the chosen item will increase and preference for the unchosen item will decrease because of the choice made. In other words, we tend to justify or rationalize our past behavior by changing our attitude. This phenomenon of choice-induced preference change has been traditionally explained by cognitive dissonance theory. Choosing something that is disliked or not choosing something that is liked are both cognitively inconsistent, and in order to reduce this inconsistency, people tend to change their subsequently stated preference in accordance with their past choices. Previously, neuroimaging studies identified posterior medial frontal cortex (pMFC) as a key brain region involved in cognitive dissonance. However, it still remains unknown whether the pMFC plays a causal role in inducing preference change following cognitive dissonance. Here, we demonstrate that 25-min 1-Hz repetitive transcranial magnetic stimulation (TMS) applied over the pMFC significantly reduces choice-induced preference change compared to sham stimulation, or control stimulation over a different brain region, demonstrating a causal role for the pMFC.
Resumo:
Characterization of neural and hemodynamic biomarkers of epileptic activity that can be measured using noninvasive techniques is fundamental to the accurate identification of the epileptogenic zone (EZ) in the clinical setting. Recently, oscillations at gamma-band frequencies and above (N30 Hz) have been suggested to provide valuable localizing information of the EZ and track cortical activation associated with epileptogenic processes. Although a tight coupling between gamma-band activity and hemodynamic-based signals has been consistently demonstrated in non-pathological conditions, very little is known about whether such a relationship is maintained in epilepsy and the laminar etiology of these signals. Confirmation of this relationship may elucidate the underpinnings of perfusion-based signals in epilepsy and the potential value of localizing the EZ using hemodynamic correlates of pathological rhythms. Here, we use concurrent multi-depth electrophysiology and 2- dimensional optical imaging spectroscopy to examine the coupling between multi-band neural activity and cerebral blood volume (CBV) during recurrent acute focal neocortical seizures in the urethane-anesthetized rat. We show a powerful correlation between gamma-band power (25–90 Hz) and CBV across cortical laminae, in particular layer 5, and a close association between gamma measures and multi-unit activity (MUA). Our findings provide insights into the laminar electrophysiological basis of perfusion-based imaging signals in the epileptic state and may have implications for further research using non-invasive multi-modal techniques to localize epileptogenic tissue
Resumo:
Objective. Functional near-infrared spectroscopy (fNIRS) is an emerging technique for the in vivo assessment of functional activity of the cerebral cortex as well as in the field of brain–computer interface (BCI) research. A common challenge for the utilization of fNIRS in these areas is a stable and reliable investigation of the spatio-temporal hemodynamic patterns. However, the recorded patterns may be influenced and superimposed by signals generated from physiological processes, resulting in an inaccurate estimation of the cortical activity. Up to now only a few studies have investigated these influences, and still less has been attempted to remove/reduce these influences. The present study aims to gain insights into the reduction of physiological rhythms in hemodynamic signals (oxygenated hemoglobin (oxy-Hb), deoxygenated hemoglobin (deoxy-Hb)). Approach. We introduce the use of three different signal processing approaches (spatial filtering, a common average reference (CAR) method; independent component analysis (ICA); and transfer function (TF) models) to reduce the influence of respiratory and blood pressure (BP) rhythms on the hemodynamic responses. Main results. All approaches produce large reductions in BP and respiration influences on the oxy-Hb signals and, therefore, improve the contrast-to-noise ratio (CNR). In contrast, for deoxy-Hb signals CAR and ICA did not improve the CNR. However, for the TF approach, a CNR-improvement in deoxy-Hb can also be found. Significance. The present study investigates the application of different signal processing approaches to reduce the influences of physiological rhythms on the hemodynamic responses. In addition to the identification of the best signal processing method, we also show the importance of noise reduction in fNIRS data.
Resumo:
Dyspnea is the major source of disability in chronic obstructive pulmonary disease (COPD). In COPD, environmental cues (e.g. the prospect of having to climb stairs) become associated with dyspnea, and may trigger dyspnea even before physical activity commences. We hypothesised that brain activation relating to such cues would be different between COPD patients and healthy controls, reflecting greater engagement of emotional mechanisms in patients. Methods: Using FMRI, we investigated brain responses to dyspnea-related word cues in 41 COPD patients and 40 healthy age-matched controls. We combined these findings with scores of self-report questionnaires thus linking the FMRI task with clinically relevant measures. This approach was adapted from studies in pain that enables identification of brain networks responsible for pain processing despite absence of a physical challenge. Results: COPD patients demonstrate activation in the medial prefrontal cortex (mPFC), and anterior cingulate cortex (ACC) which correlated with the visual analogue scale (VAS) response to word cues. This activity independently correlated with patient-reported questionnaires of depression, fatigue and dyspnea vigilance. Activation in the anterior insula, lateral prefrontal cortex (lPFC) and precuneus correlated with the VAS dyspnea scale but not the questionnaires. Conclusions: Our findings suggest that engagement of the brain's emotional circuitry is important for interpretation of dyspnea-related cues in COPD, and is influenced by depression, fatigue, and vigilance. A heightened response to salient cues is associated with increased symptom perception in chronic pain and asthma, and our findings suggest such mechanisms may be relevant in COPD.
Resumo:
The frontal pole corresponds to Brodmann area (BA) 10, the largest single architectonic area in the human frontal lobe. Generally, BA10 is thought to contain two or three subregions that subserve broad functions such as multitasking, social cognition, attention, and episodic memory. However, there is a substantial debate about the functional and structural heterogeneity of this large frontal region. Previous connectivity-based parcellation studies have identified two or three subregions in the human frontal pole. Here, we used diffusion tensor imaging to assess structural connectivity of BA10 in 35 healthy subjects and delineated subregions based on this connectivity. This allowed us to determine the correspondence of structurally based subregions with the scheme previously defined functionally. Three subregions could be defined in each subject. However, these three subregions were not spatially consistent between subjects. Therefore, we accepted a solution with two subregions that encompassed the lateral and medial frontal pole. We then examined resting-state functional connectivity of the two subregions and found significant differences between their connectivities. The medial cluster was connected to nodes of the default-mode network, which is implicated in internally focused, self-related thought, and social cognition. The lateral cluster was connected to nodes of the executive control network, associated with directed attention and working memory. These findings support the concept that there are two major anatomical subregions of the frontal pole related to differences in functional connectivity.
Resumo:
In the vertebrate brain, the thalamus serves as a relay and integration station for diverse neuronal information en route from the periphery to the cortex. Deficiency of TH during development results in severe cerebral abnormalities similar to those seen in the mouse when the retinoic acid receptor (ROR)α gene is disrupted. To investigate the effect of the thyroid hormone recep-tors (TRs) on RORalpha gene expression, we used intact male mice, in which the genes encoding the α and beta TRs have been deleted. In situ hybridization for RORalpha mRNA revealed that this gene is expressed in specific areas of the brain including the thalamus, pons, cerebellum, cortex, and hippocampus. Our quantitative data showed differences in RORalpha mRNA expression in different subthalamic nuclei between wild-type and knock-out mice. For example, the centromedial nucleus of the thalamus, which plays a role in mediating nociceptive and visceral information from the brainstem to the basal ganglia and cortical regions, has less expression of RORalpha mRNA in the knockout mice (-37%) compared to the wild-type controls. Also, in the dorsal geniculate (+72%) and lateral posterior nuclei (+58%) we found more RORalpha mRNA in dKO as compared to dWT animals. Such differences in RORalpha mRNA expression may play a role in the behavioral alterations resulting from congenital hypothyroidism.