119 resultados para Copper (II) compounds
Resumo:
Two concomitant polymorphic coordination complexes (dark blue - I and black - II) with the formula (Cu2C44H60N4O4) have been synthesized and characterized crystallographically. Magnetic measurements show the presence of a strong antiferromagnetic interaction and the 2J value corresponds extremely well to the theoretically calculated one, indicating the fact that it follows nicely the magneto-structural relationship. Immobilization of the copper(II) complex I on a 2D-hexagonal mesoporous silica showed good catalytic efficiency in the liquid phase partial oxidation of olefins in the presence of TBHP as an oxidant. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Four trinuclear Cu(II) complexes, [(CuL1)(3)(mu(3)-OH)](NO3)(2) (1), [(CuL2)(3)(mu(3)-OH)](I)(2)center dot H2O (2), [(CuL3)(3)(mu(3)-OH)](I)(2) (3) and [(CuL1)(3)(mu(3)-OH)][(CuI3)-I-1] (4), where HL1 (8-amino-4-methyl-5-azaoct-3-en-2-one), HL2 [7-amino-4-methyl-5-azaoct-3-en-2-one] and HL3 [7-amino-4-methyl-5-azahept-3-en-2- one] are the three tridentate Schiff bases, have been synthesized and structurally characterized by X-ray crystallography. All four complexes contain a partial cubane core, [(CuL)(3)(mu(3)-OH)](2+) in which the three [CuL] subunits are interconnected through two types of oxygen bridges afforded by the oxygen atoms of the ligands and the central OH- group. The copper(II) ions are in a distorted square-pyramidal environment. The equatorial plane consists of the bridging oxygen of the central OH- group together with three atoms (N, N, O) from the Schiff base. The oxygen atom of the Schiff base also coordinates to the axial position of Cu(II) of another subunit to form the cyclic trimer. Magnetic susceptibilities have been determined for these complexes over the temperature range of 2-300 K. The isotropic Hamiltonian, H = -J(12)S(1)S(2) - J(13)S(1)S(3) - J(23)S(2)S(3) has been used to interpret the magnetic data. The best fit parameters obtained are: J = - 54.98 cm(-1) g = 2.24 for 1; J = - 56.66 cm(-1), g = 2.19 for 2; J = -44.39 cm(-1), g = 2.16 for 3; J = - 89.92 cm(-1), g = 2.25 for 4. The EPR data at low temperature indicate that the phenomenon of spin frustration occurs for complexes 1-3. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Anion directed, template syntheses of two dinuclear copper(II) complexes of mono-condensed Schiff base ligand Hdipn (4-[(3-aminopentylimino)-methyl]-benzene-1,3-diol) involving 2,4- dihydroxybenzaldehyde and 1,3-diaminopentane were realized in the presence of bridging azide and acetate anions. Both complexes, [Cu-2(dipn)(2)(N-3)(2)] (1) and [Cu-2(dip(n))(2)(OAc)(2)] (2) have been characterized by X-ray crystallography. The two mononuclear units are joined together by basal-apical, double end-on azido bridges in complex 1 and by basal-apical, double mono-atomic acetate oxygen-bridges in 2. Both complexes form rectangular grid-like supramolecular structures via H-bonds connecting the azide or acetate anion and the p-hydroxy group of 2,4- dihydroxybenzaldehyde. Variable-temperature (300-2 K) magnetic susceptibility measurements reveal that complex 1 has antiferromagnetic coupling (J = -2.10 cm (1)) through the azide bridge while 2 has intra-dimer ferromagnetic coupling through the acetate bridge and inter-dimer antiferromagnetic coupling through H-bonds (J = 2.85 cm (1), J' = -1.08 cm (1)). (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
Four new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2)center dot H2O (1), [(CuL2)(3)(mu(3)-OH)](CIO4)(2) (2), [(CuL3)(3)-(mu(3)-OH)](ClO4)(4)center dot H2O (3), and [(CuL4)(3)(mu(3)-OH)](ClO4)(2)center dot H2O (4), where HL1 = 8-amino-4,7,7-trimethyl-5-azaoct-3-en-2-one, HL2 = 7-amino-4-methyl-5-azaoct-3-en-2-one, HL3 = 7(ethylamino)-4-methyl-5-azahept-3-en-2-one, and HL4 = 4-methyl-7-(methylamino)-5-azahept-3-en-2-one, have been derived from the four tridentate Schiff bases (HL1, HL2, HL3, and HL4) and structurally characterized by X-ray crystallography. For all compounds, the cationic part is trinuclear with a CU3OH core held by three carbonyl oxygen bridges between each pair of copper(II) atoms. The copper atoms are five-coordinate with a distorted square-pyramidal geometry; the equatorial plane consists of the bridging oxygen atom of the central OH group together with three atoms (N, N, O) from one ligand whereas an oxygen atom of a second ligand occupies the axial position. Magnetic measurements have been performed in the 2-300 K temperature range. The experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -J(S1S2+S2S3+S1S3) yielding as best-fit parameters: J = -66.7 and g = 2.19 for 1, J = -36.6 and g = 2.20 for 2, J = -24.5 and g = 2.20 for 3, and J = -14.9 and g = 2.05 for 4. EPR spectra at low temperature show the existence of spin frustration in complexes 3 and 4, but it has not been possible to carry out calculations of the antisymmetric exchange parameter, G, from magnetic data. In frozen methanolic solution, at 4 K, hyperfine splitting in all complexes and spin frustration in complex 4 seem to be confirmed. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)
Resumo:
Two tridentate N,N,O donor Schiff bases, HL1 (4-(2-ethylamino-ethylimino)-pentan-2-one) and HL2 (3-(2-amino-propylimino)-1-phenyl-butan-1-one) on reaction with Cu-II acetate in presence of triethyl amine yielded two basal-apical, mono-atomic acetate oxygen-bridging dimeric copper(II) complexes, [Cu2L21(OAc)(2)] (1), [Cu2L22(OAc)(2)] (2). Whereas two other similar tridentate ligands HL3 (4-(2-amino-propylimino)-pentane-2-one) and HL3 (3-(2-amino-ethylimino)-1-phenyl-butan-1-one) under the same conditions produced a mixture of the corresponding dinners and a one-dimensional alternating chain of the dimer and copper acetate moiety, [Cu4L23(OAc)(6)](n) (3) and [Cu4L24(OAc)(6)](n) (4), formed by a very rare mu(3) bridging mode of the acetate ion. All four complexes (1-4) have been characterized by X-ray crystallography. The isotropic Hamiltonian, H = -JS(1)S(2) has been used to interpret the magnetic data. Magnetic measurements of 1 and 2 in the temperature range 2-300 K reveal a very weak antiferromagnetic coupling for both complexes U = -0.56 and -1.19 cm(-1) for 1 and 2, respectively). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Two tridentate Schiff bases, HL1(6-amino-3-methyl-1-phenyl-4-azahex-2-en-1-one), and HL2 (6-atnino-3,6-dimethyl-1-phenyl-4-azahex-2-en-1-one) on reaction with Cu(II) perchlorate in the presence of triethyl amine yielded two new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2) (1) and [(CuL2)(3)(mu(3)-OH)](ClO4)(2) center dot 0.75H(2)O (2), whereas another tridentate ligand HL3 (7-amino-3-methyl-1-phenyl-4-azahept-2-en-1-one) underwent hydrolysis under the same reaction conditions to result in the formation of a mononuclear complex, [Cu(bn)(pn)ClO4] (3) [where bn = 1-benzoylacetonate and pn = 1,3-propanediamine]. All three complexes have been characterized by X-ray crystallography. For both 1 and 2 the cationic part is trinuclear with a [Cu3OH] core held by three carbonyl oxygen bridges between each pair of copper(II) atoms. The structure of 3 is a monomer with a chelating 1,3-propanediamine and a benzoyl acetone moiety. Magnetic measurements of I and 2 have been performed in the 2-300 K temperature range. The experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -J(S1S2 + S2S3 + S1S3), yielding as best fit parameters: J = -25.6 cm(-1), g = 2.21 for 1 and J = 11.2 cm(-1), g = 2.10 for 2. The EPR spectra at low temperature could be indicative of spin frustration in complex 1. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Three kinds of copper(II) azide complexes have been synthesised in excellent yields by reacting Cu(ClO4)(2) . 6H(2)O with N,N-bis(2-pyridylmethyl)amine (L-1); N-(2-pyridylmethyl)-N',N'-dimethylethylenediamine (L-2); and N-(2-pyridylmethyl)-N',N'-diethylethylenediamine (L-3), respectively, in the presence of slight excess of sodium azide. They are the monomeric Cu(L-1)(N-3)(ClO4) (1), the end-to-end diazido-bridged Cu-2(L-2)(2)(mu-1,3-N-3)(2)(ClO4)(2) (2) and the single azido-bridged (mu-1,3-) 1D chain [Cu(L-3)(mu-1,3-N-3)](n)(ClO4)(n) (3). The crystal and molecular structures of these complexes have been solved. The variable temperature magnetic moments of type 2 and type 3 complexes were studied. Temperature dependent susceptibility for 2 was fitted using the Bleaney-Bowers expression which led to the parameters J = -3.43 cm(-1) and R = 1 X 10(-5). The magnetic data for 3 were fitted to Baker's expression for S = 1/2 and the parameters obtained were J = 1.6 cm(-1) and R = 3.2 x 10(-4). Crystal data are as follows. Cu(L-1)(N-3)(ClO4): Chemical formula, C12H13ClN6O4Cu; crystal system, monoclinic; space group, P2(1)/c; a = 8.788(12), b = 13.045(15), c = 14.213(15) Angstrom; beta = 102.960(10)degrees; Z = 4. Cu(L-2)(mu-N-3)(ClO4): Chemical formula. C10H17ClN6O4Cu: crystal system, monoclinic; space group, P2(1)/c; a = 10.790(12), b = 8.568(9), c = 16.651(17) Angstrom; beta = 102.360(10)degrees; Z = 4. [Cu(L-3)(mu-N-3)](ClO4): Chemical formula, C12H21ClN6O4Cu; crystal system, monoclinic; space group, P2(1)/c; a = 12.331(14), b = 7.804(9), c = 18.64(2) Angstrom; beta = 103.405(10)degrees; Z = 4. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Copper(l) complexes of 1:3 condensates of tris(2-aminoethyl)amine and p-X-benzaldehydes (X = K Cl, NMe2 and NO2) of the type [Cu(ligand)]ClO4 are synthesised. The X-ray crystal structures of the copper(l) complexes with X = K, Cl and NMe2 are determined. In these complexes copper(l) is found to have trigonal pyramidal N-4 coordination sphere with the apical N forming a longer bond (2.191-2.202 Angstrom) than the trigonal ones (2.003-2.026 Angstrom). The Cu(II/I) potentials in these complexes span a range of 0.71-0.90 V vs SCE increasing linearly with the resonance component of the Hammett sigma for the para substituent X. It is concluded that trigonal pyramidal geometry is destabilising for copper(II).
Resumo:
A square-planar compound [Cu(pyrimol)Cl] (pyrimol = 4-methyl-2-N-(2-pyridylmethylene)aminophenolate) abbreviated as CuL–Cl) is described as a biomimetic model of the enzyme galactose oxidase (GOase). This copper(II) compound is capable of stoichiometric aerobic oxidation of activated primary alcohols in acetonitrile/water to the corresponding aldehydes. It can be obtained either from Hpyrimol (HL) or its reduced/hydrogenated form Hpyramol (4-methyl-2-N-(2-pyridylmethyl)aminophenol; H2L) readily converting to pyrimol (L-) on coordination to the copper(II) ion. Crystalline CuL–Cl and its bromide derivative exhibit a perfect square-planar geometry with Cu–O(phenolate) bond lengths of 1.944(2) and 1.938(2) Å. The cyclic voltammogram of CuL–Cl exhibits an irreversible anodic wave at +0.50 and +0.57 V versus ferrocene/ferrocenium (Fc/Fc+) in dry dichloromethane and acetonitrile, respectively, corresponding to oxidation of the phenolate ligand to the corresponding phenoxyl radical. In the strongly donating acetonitrile the oxidation path involves reversible solvent coordination at the Cu(II) centre. The presence of the dominant CuII–L. chromophore in the electrochemically and chemically oxidised species is evident from a new fairly intense electronic absorption at 400–480 nm ascribed to a several electronic transitions having a mixed pi-pi(L.) intraligand and Cu–Cl -> L. charge transfer character. The EPR signal of CuL–Cl disappears on oxidation due to strong intramolecular antiferromagnetic exchange coupling between the phenoxyl radical ligand (L.) and the copper(II) centre, giving rise to a singlet ground state (S = 0). The key step in the mechanism of the primary alcohol oxidation by CuL–Cl is probably the alpha-hydrogen abstraction from the equatorially bound alcoholate by the phenoxyl moiety in the oxidised pyrimol ligand, Cu–L., through a five-membered cyclic transition state.
Resumo:
The copper(II) complex [Cu(bdoa)(H2O)2] (bdoaH2 = benzene-1,2-dioxyacetic acid) reacts with triphenylphosphine (1:4 mol ratio) to give the colourless copper(I) complex [Cu(η1-bdoaH)(PPh3)3] (1) in good yield. The X-ray crystal structure of the complex shows the copper atom at the centre of a distorted tetrahedron, and is ligated by the phosphorus atoms of the three triphenylphosphines and one carboxylate oxygen atom of the bdoaH− ligand. Significant intermolecular hydrogen-bonding exists between the pendant carboxylate OH function of one molecule and the uncoordinated “ketonic” oxygen of a neighbouring molecule. Complex 1 is non-conducting in chloroform but ionizes readily in acetonitrile. The cyclic voltammogram of an acetonitrile solution of 1 shows a single irreversible anodic peak for the oxidation of the PPh3 ligands and the copper(I) centre, and a single irreversible cathodic peak for the reduction of the bdoaH− ion. IR and mass spectral data for 1 are given.
Resumo:
The dibenzodioxatetraazamacrocycle [26]pbz(2)N(4)O(2) was characterised by single crystal X-ray diffraction and the protonation constants of this compound and the stability constants of its copper(II) and lead(II) complexes were determined by potentiometry in water at 298.2 K in 0.10 mol dm(-3) in KNO3. Mono- and dinuclear complexes were found for both metal ions, the dinuclear complexes being the main species in the 5-7.5 pH range for copper(II) and 7.5-8.5 for lead(II). As expected the values of the stability constants for the copper(II) complexes are lower than those for related macrocycles containing only nitrogen atoms. The presence of mono- and dinuclear copper complexes was also confirmed by electrospray ionization mass spectrometry. These results suggest that the symmetric macrocyclic cavity of [26]pbZ(2)N(4)O(2) has enough space for the coordination of two metal ions. Additionally, NMR spectroscopy showed that the dinuclear complex of lead(II) has high symmetry. The equilibrium constants of the dinuclear copper(II) complexes and dicarboxylate anions (oxalate, malonate and succinate) were also determined in 0.10 mol dm-3 aqueous KNO3 solution. Only species containing one anion, Cu(2)H(h)LA((2+h)), were found, strongly suggesting that the anion bridges the two copper(II) ions. The binding constants of the cascade species formed by [Cu-2[26]pbZ(2)N(4)O(2)(H2O)(4+) with dicarboxylate anions decrease with the increase in length of the alkyl chain of the anion, a fact which was attributed to a higher conformational energy necessary for the rearrangement of the macrocycle to accommodate the larger anions bridging the two copper(II) centres. The variation of the magnetic susceptibility with temperature Of [Cu-2(H-2[26]pbz(2)N(4)O(2))(oxa)(3)]-4H(2)O and [Cu-2([26]pbz(2)N(4)O(2))(suc)Cl-2] were measured and the two complexes showed different behaviour. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
it has been established that triazinyl bipyridines (hemi-BTPs) and bis-triazinyl pyridines (BTPs), ligands which are currently being investigated as possible ligands for the separation of actinides from lanthanides in nuclear waste, are able to form homoleptic complexes with first row transition metals such as cobalt(IT), copper(II), iron(II), manganese(II), nickel(II) and zinc(II). The metal complexes exhibit six-co-ordinate octahedral structures and redox states largely analogous to those of the related terpyridine complexes. The reactivity of the different redox states of cobalt bis-hemi-BTP complex in aqueous environments has been studied with two-phase electrochemistry by immobilisation of the essentially water-insoluble metal complexes on graphite electrodes and the immersion of this modified electrode in an aqueous electrolyte. It was found that redox potentials for the metal-centred reactions were pH-independent whereas the potentials for the ligand-centred reactions were strongly pH-dependent. The reductive degradation of these complexes has been investigated by computational methods. Solvent extraction experiments have been carried out for a range of metals and these show that cobalt(II) and nickel(II) as well as palladium(II), cadmium(II) and lead(II) were all extracted with the ligands 1e and 2c with higher distribution ratios that was observed for americium(III) under the same conditions. The implications of this result for the use of these ligands to separate actinides from nuclear waste are discussed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
[Cu(2-acetylpyridine)(2)]ClO4 (1), characterised here, has a novel Cu'N202 core in the solid state. Variable-temperature H-1 NMR studies show that the two chelate rings open up in solution at room temperature and the keto oxygen atoms dangle freely. As the temperature is lowered, the 0 atoms tend to bind to the metal atom. The corresponding silver(I) complex, [Ag(2-acetylpyridine)2]ClO4 (4), characterised by single-crystal X-ray crystallography, has an (AgN2)-N-I core in the solid state as well as in solution. Thus, while 1 is fluxional, 4 is not. In cyclic voltammetry, complex 1 displays a quasireversible Cu-II/I couple with a half-wave potential of 0.40 V vs. SCE. Complex I is easily oxidised by air and H2O2 in methanol to give rise to a dinuclear copper(II) complex where the ligand framework is not simple acetylpyridine. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005).
Resumo:
A novel bis(glycinato) copper(II) paradodecatungstate Na-8[{Cu(gly)(2)}(2)]-{H-2(H2W12O42)}] center dot 24H(2)O (1) has been synthesized under hydrothermal conditions. The crystal structure of 1 reveals an infinite one-dimensional chain along the [100] direction and is built from paradodecatungstate (H2W12O42)(10-) clusters joined through [Cu(gly)(2)] moieties. Parallel chains are interlinked by NaO6 octahedra to generate a two-dimensional network.
Resumo:
Polymetallic nanodimensional assemblies have been prepared via metal directed assembly of dithiocarbamate functionalized cavitand structural frameworks with late transition metals (Ni, Pd, Cu, Au, Zn, and Cd). The coordination geometry about the metal centers is shown to dictate the architecture adopted. X-ray crystallographic studies confirm that square planar coordination geometries result in "cagelike" octanuclear complexes, whereas square-based pyramidal metal geometries favor hexanuclear "molecular loop" structures. Both classes of complex are sterically and electronically complementary to the fullerenes (C-60 and C-70). The strong binding of these guests occurred via favorable interactions with the sulfur atoms of multiple dithiocarbamate moieties of the hosts. In the case of the tetrameric copper(II) complexes, the lability of the copper(II)-dithiocarbamate bond enabled the fullerene guests to be encapsulated in the electron-rich cavity of the host, over time. The examination of the binding of fullerenes has been undertaken using spectroscopic and electrochemical methods, electrospray mass spectrometry, and molecular modeling.