79 resultados para Consumption Predicting Model
Resumo:
So-called ‘radical’ and ‘critical’ pedagogy seems to be everywhere these days on the landscapes of geographical teaching praxis and theory. Part of the remit of radical/critical pedagogy involves a de-centring of the traditional ‘banking’ method of pedagogical praxis. Yet, how do we challenge this ‘banking’ model of knowledge transmission in both a large-class setting and around the topic of commodity geographies where the banking model of information transfer still holds sway? This paper presents a theoretically and pedagogically driven argument, as well as a series of practical teaching ‘techniques’ and tools—mind-mapping and group work—designed to promote ‘deep learning’ and a progressive political potential in a first-year large-scale geography course centred around lectures on the Geographies of Consumption and Material Culture. Here students are not only asked to place themselves within and without the academic materials and other media but are urged to make intimate connections between themselves and their own consumptive acts and the commodity networks in which they are enmeshed. Thus, perhaps pedagogy needs to be emplaced firmly within the realms of research practice rather than as simply the transference of research findings.
Resumo:
As the calibration and evaluation of flood inundation models are a prerequisite for their successful application, there is a clear need to ensure that the performance measures that quantify how well models match the available observations are fit for purpose. This paper evaluates the binary pattern performance measures that are frequently used to compare flood inundation models with observations of flood extent. This evaluation considers whether these measures are able to calibrate and evaluate model predictions in a credible and consistent way, i.e. identifying the underlying model behaviour for a number of different purposes such as comparing models of floods of different magnitudes or on different catchments. Through theoretical examples, it is shown that the binary pattern measures are not consistent for floods of different sizes, such that for the same vertical error in water level, a model of a flood of large magnitude appears to perform better than a model of a smaller magnitude flood. Further, the commonly used Critical Success Index (usually referred to as F<2 >) is biased in favour of overprediction of the flood extent, and is also biased towards correctly predicting areas of the domain with smaller topographic gradients. Consequently, it is recommended that future studies consider carefully the implications of reporting conclusions using these performance measures. Additionally, future research should consider whether a more robust and consistent analysis could be achieved by using elevation comparison methods instead.
Resumo:
The recommendation to reduce saturated fatty acid (SFA) consumption to ≤10% of total energy (%TE) is a key public health target aimed at lowering cardiovascular disease (CVD) risk. Replacement of SFA with unsaturated fats may provide greater benefit than replacement with carbohydrates, yet the optimal type of fat is unclear. The aim was to develop a flexible food-exchange model to investigate the effects of substituting SFAs with monounsaturated fatty acids (MUFAs) or n-6 (ω-6) polyunsaturated fatty acids (PUFAs) on CVD risk factors. In this parallel study, UK adults aged 21-60 y with moderate CVD risk (50% greater than the population mean) were identified using a risk assessment tool (n = 195; 56% females). Three 16-wk isoenergetic diets of specific fatty acid (FA) composition (%TE SFA:%TE MUFA:%TE n-6 PUFA) were designed using spreads, oils, dairy products, and snacks as follows: 1) SFA-rich diet (17:11:4; n = 65); 2) MUFA-rich diet (9:19:4; n = 64); and 3) n-6 PUFA-rich diet (9:13:10; n = 66). Each diet provided 36%TE total fat. Dietary targets were broadly met for all intervention groups, reaching 17.6 ± 0.4%TE SFA, 18.5 ± 0.3%TE MUFA, and 10.4 ± 0.3%TE n-6 PUFA in the respective diets, with significant overall diet effects for the changes in SFA, MUFA, and n-6 PUFA between groups (P < 0.001). There were no differences in the changes of total fat, protein, carbohydrate, and alcohol intake or anthropometric measures between groups. Plasma phospholipid FA composition showed changes from baseline in the proportions of total SFA, MUFA, and n-6 PUFA for each diet group, with significant overall diet effects for total SFA and MUFA between groups (P < 0.001). In conclusion, successful implementation of the food-exchange model broadly achieved the dietary target intakes for the exchange of SFA with MUFA or n-6 PUFA with minimal disruption to the overall diet in a free-living population. This trial was registered at clinicaltrials.gov as NCT01478958.
Resumo:
Population modelling is increasingly recognised as a useful tool for pesticide risk assessment. For vertebrates that may ingest pesticides with their food, such as woodpigeon (Columba palumbus), population models that simulate foraging behaviour explicitly can help predicting both exposure and population-level impact. Optimal foraging theory is often assumed to explain the individual-level decisions driving distributions of individuals in the field, but it may not adequately predict spatial and temporal characteristics of woodpigeon foraging because of the woodpigeons’ excellent memory, ability to fly long distances, and distinctive flocking behaviour. Here we present an individual-based model (IBM) of the woodpigeon. We used the model to predict distributions of foraging woodpigeons that use one of six alternative foraging strategies: optimal foraging, memory-based foraging and random foraging, each with or without flocking mechanisms. We used pattern-oriented modelling to determine which of the foraging strategies is best able to reproduce observed data patterns. Data used for model evaluation were gathered during a long-term woodpigeon study conducted between 1961 and 2004 and a radiotracking study conducted in 2003 and 2004, both in the UK, and are summarised here as three complex patterns: the distributions of foraging birds between vegetation types during the year, the number of fields visited daily by individuals, and the proportion of fields revisited by them on subsequent days. The model with a memory-based foraging strategy and a flocking mechanism was the only one to reproduce these three data patterns, and the optimal foraging model produced poor matches to all of them. The random foraging strategy reproduced two of the three patterns but was not able to guarantee population persistence. We conclude that with the memory-based foraging strategy including a flocking mechanism our model is realistic enough to estimate the potential exposure of woodpigeons to pesticides. We discuss how exposure can be linked to our model, and how the model could be used for risk assessment of pesticides, for example predicting exposure and effects in heterogeneous landscapes planted seasonally with a variety of crops, while accounting for differences in land use between landscapes.
Resumo:
Earthworms are significant ecosystem engineers and are an important component of the diet of many vertebrates and invertebrates, so the ability to predict their distribution and abundance would have wide application in ecology, conservation and land management. Earthworm viability is known to be affected by the availability and quality of food resources, soil water conditions and temperature, but has not yet been modelled mechanistically to link effects on individuals to field population responses. Here we present a novel model capable of predicting the effects of land management and environmental conditions on the distribution and abundance of Aporrectodea caliginosa, the dominant earthworm species in agroecosystems. Our process-based approach uses individual based modelling (IBM), in which each individual has its own energy budget. Individual earthworm energy budgets follow established principles of physiological ecology and are parameterised for A. caliginosa from experimental measurements under optimal conditions. Under suboptimal conditions (e.g. food limitation, low soil temperatures and water contents) reproduction is prioritised over growth. Good model agreement to independent laboratory data on individual cocoon production and growth of body mass, under variable feeding and temperature conditions support our representation of A. caliginosa physiology through energy budgets. Our mechanistic model is able to accurately predict A. caliginosa distribution and abundance in spatially heterogeneous soil profiles representative of field study conditions. Essential here is the explicit modelling of earthworm behaviour in the soil profile. Local earthworm movement responds to a trade-off between food availability and soil water conditions, and this determines the spatiotemporal distribution of the population in the soil profile. Importantly, multiple environmental variables can be manipulated simultaneously in the model to explore earthworm population exposure and effects to combinations of stressors. Potential applications include prediction of the population-level effects of pesticides and changes in soil management e.g. conservation tillage and climate change.
Resumo:
Many studies evaluating model boundary-layer schemes focus either on near-surface parameters or on short-term observational campaigns. This reflects the observational datasets that are widely available for use in model evaluation. In this paper we show how surface and long-term Doppler lidar observations, combined in a way to match model representation of the boundary layer as closely as possible, can be used to evaluate the skill of boundary-layer forecasts. We use a 2-year observational dataset from a rural site in the UK to evaluate a climatology of boundary layer type forecast by the UK Met Office Unified Model. In addition, we demonstrate the use of a binary skill score (Symmetric Extremal Dependence Index) to investigate the dependence of forecast skill on season, horizontal resolution and forecast leadtime. A clear diurnal and seasonal cycle can be seen in the climatology of both the model and observations, with the main discrepancies being the model overpredicting cumulus capped and decoupled stratocumulus capped boundary-layers and underpredicting well mixed boundary-layers. Using the SEDI skill score the model is most skillful at predicting the surface stability. The skill of the model in predicting cumulus capped and stratocumulus capped stable boundary layer forecasts is low but greater than a 24 hr persistence forecast. In contrast, the prediction of decoupled boundary-layers and boundary-layers with multiple cloud layers is lower than persistence. This process based evaluation approach has the potential to be applied to other boundary-layer parameterisation schemes with similar decision structures.
Resumo:
A fast simple climate modelling approach is developed for predicting and helping to understand general circulation model (GCM) simulations. We show that the simple model reproduces the GCM results accurately, for global mean surface air temperature change and global-mean heat uptake projections from 9 GCMs in the fifth coupled model inter-comparison project (CMIP5). This implies that understanding gained from idealised CO2 step experiments is applicable to policy-relevant scenario projections. Our approach is conceptually simple. It works by using the climate response to a CO2 step change taken directly from a GCM experiment. With radiative forcing from non-CO2 constituents obtained by adapting the Forster and Taylor method, we use our method to estimate results for CMIP5 representative concentration pathway (RCP) experiments for cases not run by the GCMs. We estimate differences between pairs of RCPs rather than RCP anomalies relative to the pre-industrial state. This gives better results because it makes greater use of available GCM projections. The GCMs exhibit differences in radiative forcing, which we incorporate in the simple model. We analyse the thus-completed ensemble of RCP projections. The ensemble mean changes between 1986–2005 and 2080–2099 for global temperature (heat uptake) are, for RCP8.5: 3.8 K (2.3 × 1024 J); for RCP6.0: 2.3 K (1.6 × 1024 J); for RCP4.5: 2.0 K (1.6 × 1024 J); for RCP2.6: 1.1 K (1.3 × 1024 J). The relative spread (standard deviation/ensemble mean) for these scenarios is around 0.2 and 0.15 for temperature and heat uptake respectively. We quantify the relative effect of mitigation action, through reduced emissions, via the time-dependent ratios (change in RCPx)/(change in RCP8.5), using changes with respect to pre-industrial conditions. We find that the effects of mitigation on global-mean temperature change and heat uptake are very similar across these different GCMs.
Resumo:
This paper presents a numerical model for predicting the evolution of the pattern of ionospheric convection in response to general time-dependent magnetic reconnection at the dayside magnetopause and in the cross-tail current sheet of the geomagnetic tail. The model quantifies the concepts of ionospheric flow excitation by Cowley and Lockwood (1992), assuming a uniform spatial distribution of ionospheric conductivity. The model is demonstrated using an example in which travelling reconnection pulses commence near noon and then move across the dayside magnetopause towards both dawn and dusk. Two such pulses, 8 min apart, are used and each causes the reconnection to be active for 1 min at every MLT that they pass over. This example demonstrates how the convection response to a given change in the interplanetary magnetic field (via the reconnection rate) depends on the previous reconnection history. The causes of this effect are explained. The inherent assumptions and the potential applications of the model are discussed.
Resumo:
We report on the first realtime ionospheric predictions network and its capabilities to ingest a global database and forecast F-layer characteristics and "in situ" electron densities along the track of an orbiting spacecraft. A global network of ionosonde stations reported around-the-clock observations of F-region heights and densities, and an on-line library of models provided forecasting capabilities. Each model was tested against the incoming data; relative accuracies were intercompared to determine the best overall fit to the prevailing conditions; and the best-fit model was used to predict ionospheric conditions on an orbit-to-orbit basis for the 12-hour period following a twice-daily model test and validation procedure. It was found that the best-fit model often provided averaged (i.e., climatologically-based) accuracies better than 5% in predicting the heights and critical frequencies of the F-region peaks in the latitudinal domain of the TSS-1R flight path. There was a sharp contrast however, in model-measurement comparisons involving predictions of actual, unaveraged, along-track densities at the 295 km orbital altitude of TSS-1R In this case, extrema in the first-principle models varied by as much as an order of magnitude in density predictions, and the best-fit models were found to disagree with the "in situ" observations of Ne by as much as 140%. The discrepancies are interpreted as a manifestation of difficulties in accurately and self-consistently modeling the external controls of solar and magnetospheric inputs and the spatial and temporal variabilities in electric fields, thermospheric winds, plasmaspheric fluxes, and chemistry.
Resumo:
COCO-2 is a model for assessing the potential economic costs likely to arise off-site following an accident at a nuclear reactor. COCO-2 builds on work presented in the model COCO-1 developed in 1991 by considering economic effects in more detail, and by including more sources of loss. Of particular note are: the consideration of the directly affected local economy, indirect losses that stem from the directly affected businesses, losses due to changes in tourism consumption, integration with the large body of work on recovery after an accident and a more systematic approach to health costs. The work, where possible, is based on official data sources for reasons of traceability, maintenance and ease of future development. This report describes the methodology and discusses the results of an example calculation. Guidance on how the base economic data can be updated in the future is also provided.
Resumo:
The transfer of Cd and Zn from soils amended with sewage sludge was followed through a food chain consisting of wheat, aphids and the predator Coccinella septempunctata. Multiple regression models were generated to predict the concentrations of Cd and Zn in C. septempunctata. No significant model could be generated for Cd, indicting that the concentration of this metal was maintained within relatively narrow limits. A model predicting 64% of the variability in the Zn concentration of C. septempunctata was generated from of the concentration of Zn in the diet, time and rate of Zn consumption. The results suggest that decreasing the rate of food consumption is an effective mechanism to prevent the accumulation of Zn and that the availability of Zn in the aphid prey increased with the concentration in the aphids. The results emphasise the importance of using ecologically relevant food chains and exposure pathways during ecotoxicological studies.
Resumo:
We consider the extent to which long-horizon survey forecasts of consumption, investment and output growth are consistent with theory-based steady-state values, and whether imposing these restrictions on long-horizon forecasts will enhance their accuracy. The restrictions we impose are consistent with a two-sector model in which the variables grow at different rates in steady state. The restrictions are imposed by exponential-tilting of simple auxiliary forecast densities. We show that imposing the consumption-output restriction yields modest improvements in the long-horizon output growth forecasts, and larger improvements in the forecasts of the cointegrating combination of consumption and output: the transformation of the data on which accuracy is assessed plays an important role.
Resumo:
Individual-based models (IBMs) can simulate the actions of individual animals as they interact with one another and the landscape in which they live. When used in spatially-explicit landscapes IBMs can show how populations change over time in response to management actions. For instance, IBMs are being used to design strategies of conservation and of the exploitation of fisheries, and for assessing the effects on populations of major construction projects and of novel agricultural chemicals. In such real world contexts, it becomes especially important to build IBMs in a principled fashion, and to approach calibration and evaluation systematically. We argue that insights from physiological and behavioural ecology offer a recipe for building realistic models, and that Approximate Bayesian Computation (ABC) is a promising technique for the calibration and evaluation of IBMs. IBMs are constructed primarily from knowledge about individuals. In ecological applications the relevant knowledge is found in physiological and behavioural ecology, and we approach these from an evolutionary perspective by taking into account how physiological and behavioural processes contribute to life histories, and how those life histories evolve. Evolutionary life history theory shows that, other things being equal, organisms should grow to sexual maturity as fast as possible, and then reproduce as fast as possible, while minimising per capita death rate. Physiological and behavioural ecology are largely built on these principles together with the laws of conservation of matter and energy. To complete construction of an IBM information is also needed on the effects of competitors, conspecifics and food scarcity; the maximum rates of ingestion, growth and reproduction, and life-history parameters. Using this knowledge about physiological and behavioural processes provides a principled way to build IBMs, but model parameters vary between species and are often difficult to measure. A common solution is to manually compare model outputs with observations from real landscapes and so to obtain parameters which produce acceptable fits of model to data. However, this procedure can be convoluted and lead to over-calibrated and thus inflexible models. Many formal statistical techniques are unsuitable for use with IBMs, but we argue that ABC offers a potential way forward. It can be used to calibrate and compare complex stochastic models and to assess the uncertainty in their predictions. We describe methods used to implement ABC in an accessible way and illustrate them with examples and discussion of recent studies. Although much progress has been made, theoretical issues remain, and some of these are outlined and discussed.
Resumo:
We describe a method to predict and control the lattice parameters of hexagonal and gyroid mesoporous materials formed by liquid crystal templating. In the first part, we describe a geometric model with which the lattice parameters of different liquid crystal mesophases can be predicted as a function of their water/surfactant/oil volume fractions, based on certain geometric parameters relating to the constituent surfactant molecules. We demonstrate the application of this model to the lamellar (LR), hexagonal (H1), and gyroid bicontinuous cubic (V1) mesophases formed by the binary Brij-56 (C16EO10)/water system and the ternary Brij-56/hexadecane/water system. In this way, we demonstrate predictable and independent control over the size of the cylinders (with hexadecane) and their spacing (with water). In the second part, we produce mesoporous platinum using as templates hexagonal and gyroid phases with different compositions and show that in each case the symmetry and lattice parameter of the metal nanostructure faithfully replicate those of the liquid crystal template, which is itself in agreement with the model. This demonstrates a rational control over the geometry, size, and spacing of pores in a mesoporous metal.
Resumo:
Electronic word-of-mouth (eWOM) is recognised as a means of interpersonal communication and a powerful marketing tool. However, previous studies have focussed on related motivations, and limited attention has been given to understanding the antecedents of eWOM communication behaviour in the travel industry. This study proposes a full and partial mediation model, which brings together for the first time three key antecedents: adoption of electronic communication technology, consumer dis/satisfaction with travel consumption experience, and subjective norm. The model aims to understand the impact of these antecedents on travellers' attitude towards eWOM communication and intention to use eWOM communication media. The data were collected from international travellers (n = 524), and structural equation modelling is used to test the conceptual framework. The findings of the study suggest that overall attitude towards eWOM communication partially mediates the impact of the traveller's adoption of electronic communication technology and subjective norm, and fully mediates the impact of consumer dis/satisfaction with travel consumption experience on travellers' intention to use eWOM communication media.