129 resultados para Computer display
Resumo:
It is generally assumed that the variability of neuronal morphology has an important effect on both the connectivity and the activity of the nervous system, but this effect has not been thoroughly investigated. Neuroanatomical archives represent a crucial tool to explore structure–function relationships in the brain. We are developing computational tools to describe, generate, store and render large sets of three–dimensional neuronal structures in a format that is compact, quantitative, accurate and readily accessible to the neuroscientist. Single–cell neuroanatomy can be characterized quantitatively at several levels. In computer–aided neuronal tracing files, a dendritic tree is described as a series of cylinders, each represented by diameter, spatial coordinates and the connectivity to other cylinders in the tree. This ‘Cartesian’ description constitutes a completely accurate mapping of dendritic morphology but it bears little intuitive information for the neuroscientist. In contrast, a classical neuroanatomical analysis characterizes neuronal dendrites on the basis of the statistical distributions of morphological parameters, e.g. maximum branching order or bifurcation asymmetry. This description is intuitively more accessible, but it only yields information on the collective anatomy of a group of dendrites, i.e. it is not complete enough to provide a precise ‘blueprint’ of the original data. We are adopting a third, intermediate level of description, which consists of the algorithmic generation of neuronal structures within a certain morphological class based on a set of ‘fundamental’, measured parameters. This description is as intuitive as a classical neuroanatomical analysis (parameters have an intuitive interpretation), and as complete as a Cartesian file (the algorithms generate and display complete neurons). The advantages of the algorithmic description of neuronal structure are immense. If an algorithm can measure the values of a handful of parameters from an experimental database and generate virtual neurons whose anatomy is statistically indistinguishable from that of their real counterparts, a great deal of data compression and amplification can be achieved. Data compression results from the quantitative and complete description of thousands of neurons with a handful of statistical distributions of parameters. Data amplification is possible because, from a set of experimental neurons, many more virtual analogues can be generated. This approach could allow one, in principle, to create and store a neuroanatomical database containing data for an entire human brain in a personal computer. We are using two programs, L–NEURON and ARBORVITAE, to investigate systematically the potential of several different algorithms for the generation of virtual neurons. Using these programs, we have generated anatomically plausible virtual neurons for several morphological classes, including guinea pig cerebellar Purkinje cells and cat spinal cord motor neurons. These virtual neurons are stored in an online electronic archive of dendritic morphology. This process highlights the potential and the limitations of the ‘computational neuroanatomy’ strategy for neuroscience databases.
Resumo:
This paper describes experiments relating to the perception of the roughness of simulated surfaces via the haptic and visual senses. Subjects used a magnitude estimation technique to judge the roughness of “virtual gratings” presented via a PHANToM haptic interface device, and a standard visual display unit. It was shown that under haptic perception, subjects tended to perceive roughness as decreasing with increased grating period, though this relationship was not always statistically significant. Under visual exploration, the exact relationship between spatial period and perceived roughness was less well defined, though linear regressions provided a reliable approximation to individual subjects’ estimates.
Resumo:
The objective of a Visual Telepresence System is to provide the operator with a high fidelity image from a remote stereo camera pair linked to a pan/tilt device such that the operator may reorient the camera position by use of head movement. Systems such as these which utilise virtual reality style helmet mounted displays have a number of limitations. The geometry of the camera positions and of the displays is generally fixed and is most suitable only for viewing elements of a scene at a particular distance. To address such limitations, a prototype system has been developed where the geometry of the displays and cameras is dynamically controlled by the eye movement of the operator. This paper explores why it is necessary to actively adjust the display system as well as the cameras and justifies the use of mechanical adjustment of the displays as an alternative to adjustment by electronic or image processing methods. The electronic and mechanical design is described including optical arrangements and control algorithms. The performance and accuracy of the system is assessed with respect to eye movement.
Resumo:
This volume is based upon the 2nd IEEE European Workshop on Computer-Intensive Methods in Control and Signal Processing, held in Prague, August 1996.
Resumo:
Human-like computer interaction systems requires far more than just simple speech input/output. Such a system should communicate with the user verbally, using a conversational style language. It should be aware of its surroundings and use this context for any decisions it makes. As a synthetic character, it should have a computer generated human-like appearance. This, in turn, should be used to convey emotions, expressions and gestures. Finally, and perhaps most important of all, the system should interact with the user in real time, in a fluent and believable manner.
Resumo:
Presents a method for model based bilateral control of master-slave arm with time delay between master and slave arms, where the system supports cooperative action between manual and automatic modes. The method realises efficiencies in master-slave arm control with the simplicities of a computer and the flexibility of a skilled human operator.
Resumo:
This paper deals with the integration of radial basis function (RBF) networks into the industrial software control package Connoisseur. The paper shows the improved modelling capabilities offered by RBF networks within the Connoisseur environment compared to linear modelling techniques such as recursive least squares. The paper also goes on to mention the way this improved modelling capability, obtained through the RBF networks will be utilised within Connoisseur.
Resumo:
This paper reports on a study of computer-mediated communication within the context of a distance MA in TEFL programme which used an e-mail discussion list and then a discussion board. The study focused on the computer/Internet access and skills of the target population and their CMC needs and wants. Data were collected from 63 questionnaires and 6 in-depth interviews with students. Findings indicate that computer use and access to the Internet are widespread within the target population. In addition, most respondents indicated some competence in Internet use. No single factor emerged as an overriding inhibiting factor for lack of personal use. There was limited use of the CMC tools provided on the course for student–student interaction, mainly attributable to time constraints. However, most respondents said that they would like more CMC interaction with tutors. The main factor which would contribute to greater Internet use was training. The paper concludes with recommendations and suggestions for learner training in this area.
Resumo:
The dynamics of inter-regional communication within the brain during cognitive processing – referred to as functional connectivity – are investigated as a control feature for a brain computer interface. EMDPL is used to map phase synchronization levels between all channel pair combinations in the EEG. This results in complex networks of channel connectivity at all time–frequency locations. The mean clustering coefficient is then used as a descriptive feature encapsulating information about inter-channel connectivity. Hidden Markov models are applied to characterize and classify dynamics of the resulting complex networks. Highly accurate levels of classification are achieved when this technique is applied to classify EEG recorded during real and imagined single finger taps. These results are compared to traditional features used in the classification of a finger tap BCI demonstrating that functional connectivity dynamics provide additional information and improved BCI control accuracies.
Resumo:
Many older adults wish to gain competence in using a computer, but many application interfaces are perceived as complex and difficult to use, deterring potential users from investing the time to learn them. Hence, this study looks at the potential of ‘familiar’ interface design which builds upon users’ knowledge of real world interactions, and applies existing skills to a new domain. Tools are provided in the form of familiar visual objects, and manipulated like real-world counterparts, rather than with buttons, icons and menus found in classic WIMP interfaces. This paper describes the formative evaluation of computer interactions that are based upon familiar real world tasks, which supports multitouch interaction, involves few buttons and icons, no menus, no right-clicks or double-clicks and no dialogs. Using an example of an email client to test the principles of using “familiarity”, the initial feedback was very encouraging, with 3 of the 4 participants being able to undertake some of the basic email tasks with no prior training and little or no help. The feedback has informed a number of refinements of the design principles, such as providing clearer affordance for visual objects. A full study is currently underway.