68 resultados para Computational fluid dynamics modeling
Resumo:
A study is made of the zonal-mean motions induced by a growing baroclinic wave in several contexts, under the framework of three different analysis schemes: the conventional Eulerian mean (EM), the transformed Eulerian mean (TEM), and the generalized Lagrangian mean (GLM). The effect of meridional shear in the initial jet on these induced mean motions is considered by treating the instability problem in the context of the two-layer model. The conceptual simplicity of the TEM formulation is shown to be useful in diagnosing the dynamics of instability, much as it has been found helpful in many problems of wave, mean-flow interaction. In addition, it is found that the TEM vertical velocity is a very good indicator of the GLM vertical velocity. However, the GLM meridional velocity is always convergent towards the centre of instability activity, and is not at all well represented by the nondivergent TEM meridional velocity. In comparing the results with Uryu's (1979) calculation of the GLM circulation induced by a growing Eady wave, it is found that the inclusion of meridional jet shear in the present work leads to some strikingly different effects in the GLM zonal wind acceleration. In the case of pure baroclinic instability treated by Uryu, the Eulerian and Stokes accelerations nearly cancel each other in the centre of the channel, leaving a weak Lagrangian acceleration opposed to the Eulerian one. In the more general case of mixed baroclinic-barotropic instability, however, the Eulerian and Stokes accelerations can reinforce one another, leading to a very strong Lagrangian zonal wind
Resumo:
The concept of slow vortical dynamics and its role in theoretical understanding is central to geophysical fluid dynamics. It leads, for example, to “potential vorticity thinking” (Hoskins et al. 1985). Mathematically, one imagines an invariant manifold within the phase space of solutions, called the slow manifold (Leith 1980; Lorenz 1980), to which the dynamics are constrained. Whether this slow manifold truly exists has been a major subject of inquiry over the past 20 years. It has become clear that an exact slow manifold is an exceptional case, restricted to steady or perhaps temporally periodic flows (Warn 1997). Thus the concept of a “fuzzy slow manifold” (Warn and Ménard 1986) has been suggested. The idea is that nearly slow dynamics will occur in a stochastic layer about the putative slow manifold. The natural question then is, how thick is this layer? In a recent paper, Ford et al. (2000) argue that Lighthill emission—the spontaneous emission of freely propagating acoustic waves by unsteady vortical flows—is applicable to the problem of balance, with the Mach number Ma replaced by the Froude number F, and that it is a fundamental mechanism for this fuzziness. They consider the rotating shallow-water equations and find emission of inertia–gravity waves at O(F2). This is rather surprising at first sight, because several studies of balanced dynamics with the rotating shallow-water equations have gone beyond second order in F, and found only an exponentially small unbalanced component (Warn and Ménard 1986; Lorenz and Krishnamurthy 1987; Bokhove and Shepherd 1996; Wirosoetisno and Shepherd 2000). We have no technical objection to the analysis of Ford et al. (2000), but wish to point out that it depends crucially on R 1, where R is the Rossby number. This condition requires the ratio of the characteristic length scale of the flow L to the Rossby deformation radius LR to go to zero in the limit F → 0. This is the low Froude number scaling of Charney (1963), which, while originally designed for the Tropics, has been argued to be also relevant to mesoscale dynamics (Riley et al. 1981). If L/LR is fixed, however, then F → 0 implies R → 0, which is the standard quasigeostrophic scaling of Charney (1948; see, e.g., Pedlosky 1987). In this limit there is reason to expect the fuzziness of the slow manifold to be “exponentially thin,” and balance to be much more accurate than is consistent with (algebraic) Lighthill emission.
Resumo:
Semi-open street roofs protect pedestrians from intense sunshine and rains. Their effects on natural ventilation of urban canopy layers (UCL) are less understood. This paper investigates two idealized urban models consisting of 4(2×2) or 16(4×4) buildings under a neutral atmospheric condition with parallel (0°) or non-parallel (15°,30°,45°) approaching wind. The aspect ratio (building height (H) / street width (W)) is 1 and building width is B=3H. Computational fluid dynamic (CFD) simulations were first validated by experimental data, confirming that standard k-ε model predicted airflow velocity better than RNG k-ε model, realizable k–ε model and Reynolds stress model. Three ventilation indices were numerically analyzed for ventilation assessment, including flow rates across street roofs and openings to show the mechanisms of air exchange, age of air to display how long external air reaches a place after entering UCL, and purging flow rate to quantify the net UCL ventilation capacity induced by mean flows and turbulence. Five semi-open roof types are studied: Walls being hung above street roofs (coverage ratio λa=100%) at z=1.5H, 1.2H, 1.1H ('Hung1.5H', 'Hung1.2H', 'Hung1.1H' types); Walls partly covering street roofs (λa=80%) at z=H ('Partly-covered' type); Walls fully covering street roofs (λa=100%) at z=H ('Fully-covered' type).They basically obtain worse UCL ventilation than open street roof type due to the decreased roof ventilation. 'Hung1.1H', 'Hung1.2H', 'Hung1.5H' types are better designs than 'Fully-covered' and 'Partly-covered' types. Greater urban size contains larger UCL volume and requires longer time to ventilate. The methodologies and ventilation indices are confirmed effective to quantify UCL ventilation.
Resumo:
To bridge the gaps between traditional mesoscale modelling and microscale modelling, the National Center for Atmospheric Research, in collaboration with other agencies and research groups, has developed an integrated urban modelling system coupled to the weather research and forecasting (WRF) model as a community tool to address urban environmental issues. The core of this WRF/urban modelling system consists of the following: (1) three methods with different degrees of freedom to parameterize urban surface processes, ranging from a simple bulk parameterization to a sophisticated multi-layer urban canopy model with an indoor–outdoor exchange sub-model that directly interacts with the atmospheric boundary layer, (2) coupling to fine-scale computational fluid dynamic Reynolds-averaged Navier–Stokes and Large-Eddy simulation models for transport and dispersion (T&D) applications, (3) procedures to incorporate high-resolution urban land use, building morphology, and anthropogenic heating data using the National Urban Database and Access Portal Tool (NUDAPT), and (4) an urbanized high-resolution land data assimilation system. This paper provides an overview of this modelling system; addresses the daunting challenges of initializing the coupled WRF/urban model and of specifying the potentially vast number of parameters required to execute the WRF/urban model; explores the model sensitivity to these urban parameters; and evaluates the ability of WRF/urban to capture urban heat islands, complex boundary-layer structures aloft, and urban plume T&D for several major metropolitan regions. Recent applications of this modelling system illustrate its promising utility, as a regional climate-modelling tool, to investigate impacts of future urbanization on regional meteorological conditions and on air quality under future climate change scenarios. Copyright © 2010 Royal Meteorological Society
Resumo:
Rapid rates of urbanization have resulted into increased concerns of urban environment. Amongst them, wind and thermal comfort levels for pedestrians have attracted research interest. In this regards, urban wind environment is seen as a crucial components that can lead to improved thermal comfort levels for pedestrian population. High rise building in modern urban setting causes high levels of turbulence that renders discomfort to pedestrians. Additionally, a higher frequency of high ris e buildings at a particular region acts as a shield against the wind flow to the lower buildings beyond them resulting into higher levels of discomfort to users or residents. Studies conducted on developing wind flow models using Computational Fluid Dynami cs (CFD) simulations have revealed improvement in interval to height ratios can results into improved wind flow within the simulation grid. However, high value and demand for land in urban areas renders expansion to be an impractical solution. Nonetheless, innovative utilization of architectural concepts can be imagined to improve the pedestrian comfort levels through improved wind permeability. This paper assesses the possibility of through-building gaps being a solution to improve pedestrian comfort levels.
Resumo:
This article describes a case study involving information technology managers and their new programmer recruitment policy, but the primary interest is methodological. The processes of issue generation and selection and model conceptualization are described. Early use of “magnetic hexagons” allowed the generation of a range of issues, most of which would not have emerged if system dynamics elicitation techniques had been employed. With the selection of a specific issue, flow diagraming was used to conceptualize a model, computer implementation and scenario generation following naturally. Observations are made on the processes of system dynamics modeling, particularly on the need to employ general techniques of knowledge elicitation in the early stages of interventions. It is proposed that flexible approaches should be used to generate, select, and study the issues, since these reduce any biasing of the elicitation toward system dynamics problems and also allow the participants to take up the most appropriate problem- structuring approach.
Resumo:
Numerical models of the atmosphere combine a dynamical core, which approximates solutions to the adiabatic, frictionless governing equations for fluid dynamics, with tendencies arising from the parametrization of other physical processes. Since potential vorticity (PV) is conserved following fluid flow in adiabatic, frictionless circumstances, it is possible to isolate the effects of non-conservative processes by accumulating PV changes in an air-mass relative framework. This “PV tracer technique” is used to accumulate separately the effects on PV of each of the different non-conservative processes represented in a numerical model of the atmosphere. Dynamical cores are not exactly conservative because they introduce, explicitly or implicitly, some level of dissipation and adjustment of prognostic model variables which acts to modify PV. Here, the PV tracers technique is extended to diagnose the cumulative effect of the non-conservation of PV by a dynamical core and its characteristics relative to the PV modification by parametrized physical processes. Quantification using the Met Office Unified Model reveals that the magnitude of the non-conservation of PV by the dynamical core is comparable to those from physical processes. Moreover, the residual of the PV budget, when tracing the effects of the dynamical core and physical processes, is at least an order of magnitude smaller than the PV tracers associated with the most active physical processes. The implication of this work is that the non-conservation of PV by a dynamical core can be assessed in case studies with a full suite of physics parametrizations and directly compared with the PV modification by parametrized physical processes. The nonconservation of PV by the dynamical core is shown to move the position of the extratropical tropopause while the parametrized physical processes have a lesser effect at the tropopause level.