89 resultados para Combined assurance
Resumo:
This paper reports the results of a parametric CFD study on idealized city models to investigate the potential of slope flow in ventilating a city located in a mountainous region when the background synoptic wind is absent. Examples of such a city include Tokyo in Japan, Los Angeles and Phoenix in the US, and Hong Kong. Two types of buoyancy-driven flow are considered, i.e., slope flow from the mountain slope (katabatic wind at night and anabatic wind in the daytime), and wall flow due to heated/cooled urban surfaces. The combined buoyancy-driven flow system can serve the purpose of dispersing the accumulated urban air pollutants when the background wind is weak or absent. The microscopic picture of ventilation performance within the urban structures was evaluated in terms of air change rate (ACH) and age of air. The simulation results reveal that the slope flow plays an important role in ventilating the urban area, especially in calm conditions. Katabatic flow at night is conducive to mitigating the nocturnal urban heat island. In the present parametric study, the mountain slope angle and mountain height are assumed to be constant, and the changing variables are heating/cooling intensity and building height. For a typical mountain of 500 m inclined at an angle of 20° to the horizontal level, the interactive structure is very much dependent on the ratio of heating/cooling intensity as well as building height. When the building is lower than 60 m, the slope wind dominates. When the building is as high as 100 m, the contribution from the urban wall flow cannot be ignored. It is found that katabatic wind can be very beneficial to the thermal environment as well as air quality at the pedestrian level. The air change rate for the pedestrian volume can be as high as 300 ACH.
Resumo:
Natural ventilation relies on less controllable natural forces so that it needs more artificial control, and thus its prediction, design and analysis become more important. This paper presents both theoretical and numerical simulations for predicting the natural ventilation flow in a two-zone building with multiple openings which is subjected to the combined natural forces. To our knowledge, this is the first analytical solutions obtained so far for a building with more than one zones and in each zone with possibly more than 2 openings. The analytical solution offers a possibility for validating a multi-zone airflow program. A computer program MIX is employed to conduct the numerical simulation. Good agreement is achieved. Different airflow modes are identified and some design recommendations are also provided.
Resumo:
Direct outdoor air cooling contributes a lot not only to the improvement of the indoor air quality but also to the energy saving. Its full use will reduce the water chiller’s running time especially in some stores where cooling load keeps much higher and longer than that in other buildings. A novel air-conditioning system named Combined Variable Air Volume system (CVAV), combining a normal AHU with a separate outdoor air supply system, was proposed firstly by the authors. The most attractive feature of the system is its full utilization of cooling capacity and freshness of outdoor air in the transition period of the year round. On the basis of the obtain of the dynamic cooling loads of the typical shopping malls in different four cities located in cold climates in China with the aid of DOE-2, the possibility of increasing the amount of outdoor air volume of CVAV system in the transition period instead of operating the water chillers was confirmed. Moreover, a new concept, Direct Outdoor Air Cooling Efficiency (DOACE), was defined as the ratio of cooling capacity of outdoor air to the water chiller, indicating the degree of outdoor air’s utilization. And the DOACE of the CVAV was calculated and compared with that of conventional all-air constant volume air-conditioning systems, the results showed that CVAV bear much more energy saving potential with the 10%~19% higher DOACE and it is a kind of energy efficient systems and can improve the indoor air quality as well.
Resumo:
Two genetic fingerprinting techniques, pulsed-field gel electrophoresis (PFGE) and ribotyping, were used to characterize 207 Escherichia coli O157 isolates from food animals, foods of animal origin, and cases of human disease (206 of the isolates were from the United Kingdom). In addition, 164 of these isolates were also phage typed. The isolates were divided into two general groups: (i) unrelated isolates not known to be epidemiologically linked (n = 154) and originating from food animals, foods and the environment, or humans and (ii) epidemiologically related isolates (n = 53) comprised of four related groups (RGs) originating either from one farm plus the abattoir where cattle from that farm were slaughtered or from one of three different English abattoirs. PFGE was conducted with the restriction endonuclease XbaI. while for ribotyping, two restriction endonucleases (PstI and SphI) were combined to digest genomic DNAs simultaneously. The 207 E. coli O157 isolates produced 97 PFGE profiles and 51 ribotypes. The two genetic fingerprinting methods had similar powers to discriminate the 154 epidemiologically unrelated E. coli O157 isolates in the study (Simpson's index of diversity [D] = 0.98 and 0.94 for PFGE typing and ribotyping, respectively). There was no correlation between the source of an isolate (healthy meat or milk animals, retail meats, or cases of human infection) and either particular PFGE or ribotype profiles or clusters. Combination of the results of both genetic fingerprinting methods produced 146 types, significantly more than when either of the two methods was used individually. Consequently, the superior discriminatory performance of the PFGE-ribotyping combination was proven in two ways: (i) by demonstrating that the majority of the E. coli O157 isolates with unrelated histories were indeed distinguishable types and (ii) by identifying some clonal groups among two of the four RGs of E. coli O157 isolates (comprising PFGE types different by just one or two bands), the relatedness of which would have remained unconfirmed otherwise.
Resumo:
The steady growth of social and environmental reporting (SER) is being accompanied by an increase in social and environmental reporting assurance (SERA). The existing literature on SERA suggests that it is necessary to build credibility and trust among corporate stakeholders. Prior work has also found evidence of managerial and professional capture of SERA. In this paper, we present empirical evidence from interviews with corporate social responsibility representatives from 20 UK listed companies on whether they consider SERA to be necessary. We believe this to be the first research into SERA that uses an interview method. Our interviews revealed mixed feelings. Half of the respondents believed that external SERA would enhance credibility and trust which confirmed the prior literature. However, the other half believed that external SERA was not necessary, believing that internal assurance was sufficient. This was because they saw SERA as predominantly a managerial tool, useful for checking the efficiency of internal management control systems, rather than as a mechanism for enhancing corporate accountability to stakeholders and building credibility and trust. The potential for SERA to be a mechanism whereby greater dialogue is created between companies and their stakeholders on social and environmental issues is not being harnessed. This paper thus demonstrates a fundamental difference between the external prior normative literature and the managerial motivation in the SERA area.
Resumo:
Purpose – The purpose of the research was to discover the process of social and environmental report assurance (SERA) and thereby evaluate the benefits, extent of stakeholder inclusivity and/or managerial capture of SERA processes and the dynamics of SERA as it matures. Design/methodology/approach – This paper used semi-structured interviews with 20 accountant and consultant assurors to derive data, which were then coded and analysed, resulting in the identification of four themes. Findings – This paper provides interview evidence on the process of SERA, suggesting that, although there is still managerial capture of SERA, stakeholders are being increasingly included in the process as it matures. SERA is beginning to provide dual-pronged benefits, adding value to management and stakeholders simultaneously. Through the lens of Freirian dialogic theory, it is found that SERA is starting to display some characteristics of a dialogical process, being stakeholder inclusive, demythologising and transformative, with assurors perceiving themselves as a “voice” for stakeholders. Consequently, SERA is becoming an important mechanism for driving forward more stakeholder-inclusive SER, with the SERA process beginning to transform attitudes of management towards their stakeholders through more stakeholder-led SER. However, there remain significant obstacles to dialogic SERA. The paper suggests these could be removed through educative and transformative processes driven by assurors. Originality/value – Previous work on SERA has involved predominantly content-based analysis on assurance statements. However, this paper investigates the details of the SERA process, for the first time using qualitative interview data.
Resumo:
This study examines the effect of combining equatorial planetary wave drag and gravity wave drag in a one-dimensional zonal mean model of the quasi-biennial oscillation (QBO). Several different combinations of planetary wave and gravity wave drag schemes are considered in the investigations, with the aim being to assess which aspects of the different schemes affect the nature of the modeled QBO. Results show that it is possible to generate a realistic-looking QBO with various combinations of drag from the two types of waves, but there are some constraints on the wave input spectra and amplitudes. For example, if the phase speeds of the gravity waves in the input spectrum are large relative to those of the equatorial planetary waves, critical level absorption of the equatorial planetary waves may occur. The resulting mean-wind oscillation, in that case, is driven almost exclusively by the gravity wave drag, with only a small contribution from the planetary waves at low levels. With an appropriate choice of wave input parameters, it is possible to obtain a QBO with a realistic period and to which both types of waves contribute. This is the regime in which the terrestrial QBO appears to reside. There may also be constraints on the initial strength of the wind shear, and these are similar to the constraints that apply when gravity wave drag is used without any planetary wave drag. In recent years, it has been observed that, in order to simulate the QBO accurately, general circulation models require parameterized gravity wave drag, in addition to the drag from resolved planetary-scale waves, and that even if the planetary wave amplitudes are incorrect, the gravity wave drag can be adjusted to compensate. This study provides a basis for knowing that such a compensation is possible.
Resumo:
Modern neurostimulation approaches in humans provide controlled inputs into the operations of cortical regions, with highly specific behavioral consequences. This enables causal structure–function inferences, and in combination with neuroimaging, has provided novel insights into the basic mechanisms of action of neurostimulation on dis- tributed networks. For example,more recent work has established the capacity of transcranialmagnetic stimulation (TMS) to probe causal interregional influences, and their interaction with cognitive state changes. Combinations of neurostimulation and neuroimaging now face the challenge of integrating the known physiological effects of neu- rostimulationwith theoretical and biologicalmodels of cognition, for example,when theoretical stalemates between opposing cognitive theories need to be resolved. This will be driven by novel developments, including biologically informedcomputational network analyses for predicting the impactofneurostimulationonbrainnetworks, as well as novel neuroimaging and neurostimulation techniques. Such future developments may offer an expanded set of tools withwhich to investigate structure–function relationships, and to formulate and reconceptualize testable hypotheses about complex neural network interactions and their causal roles in cognition
Resumo:
There is considerable interest in the use of porous asphalt (PA) surfacing on highways since physical and subjective assessments of noise have indicated a significant advantage over conventional non-porous surfaces such as hot rolled asphalt (HRA) used widely for motorway surfacing in the UK. However, it was not known whether the benefit of the PA surface was affected by the presence of roadside barriers. Noise predictions have been made using the Boundary Element Method (BEM) approach to determine the extent to which the noise reducing benefits of PA could be added to the screening effects of noise barriers in order to obtain the overall reduction in noise levels
Resumo:
The occurrence of mid-latitude windstorms is related to strong socio-economic effects. For detailed and reliable regional impact studies, large datasets of high-resolution wind fields are required. In this study, a statistical downscaling approach in combination with dynamical downscaling is introduced to derive storm related gust speeds on a high-resolution grid over Europe. Multiple linear regression models are trained using reanalysis data and wind gusts from regional climate model simulations for a sample of 100 top ranking windstorm events. The method is computationally inexpensive and reproduces individual windstorm footprints adequately. Compared to observations, the results for Germany are at least as good as pure dynamical downscaling. This new tool can be easily applied to large ensembles of general circulation model simulations and thus contribute to a better understanding of the regional impact of windstorms based on decadal and climate change projections.
Resumo:
Pollination is an essential process in the sexual reproduction of seed plants and a key ecosystem service to human welfare. Animal pollinators decline as a consequence of five major global change pressures: climate change, landscape alteration, agricultural intensification, non-native species, and spread of pathogens. These pressures, which differ in their biotic or abiotic nature and their spatiotemporal scales, can interact in nonadditive ways (synergistically or antagonistically), but are rarely considered together in studies of pollinator and/or pollination decline. Management actions aimed at buffering the impacts of a particular pressure could thereby prove ineffective if another pressure is present. Here, we focus on empirical evidence of the combined effects of global change pressures on pollination, highlighting gaps in current knowledge and future research needs.
Resumo:
Recent years have seen increased interest in skeletal populations from the Imperial Roman Age in Italy, but much less is known about diet and standards of living in the subsequent medieval period. To fill this gap, we conducted a morphological analysis of human remains from Albano, an Italian town near Rome, as well as a stable isotope analysis of bone collagen to reconstruct diet. The sample was recovered from a Medieval cemetery (1040–1220 cal. yr. BP) located in the gardens of the historical Palazzo Doria Pamphili in Albano. A minimum number of 40 individuals (31 adults and 9 sub-adults) were examined using standard methods. Though the general health status of the population was good, signs of cribra orbitalia and diffuse enthesopathies were noted during the morphological examination. Stable carbon and nitrogen isotope analyses of the bone collagen from 24 adult humans and three faunal bones indicate that the diet of the population may be described as predominantly terrestrial and C3-plant based although the data for some of the individuals suggest a modest consumption of C4-(millet) based or aquatic proteins. No evidence of significant dietary differences between the sexes was found. The comparison of the isotope data from Albano with those from populations recovered in the same region is consistent with a shift from a terrestrial, possibly plant foods-dominated subsistence in the Early Middle Ages to a diet with a higher contribution from animal proteins, both terrestrial and aquatic, in the Later Middle Ages.
Resumo:
Food safety, alongside food quality, remains a primary concern of both consumers and those along the whole food supply chain, leading to regulation by government alongside private third party certification. Much has been written about the value of these systems primarily from the perception of the consumer. This paper reports on a study that examined industry perceptions on the regulatory and assurance systems within the dairy sector of England and Wales. It found that the primary producer found value in both systems, although from a food hygiene focus regulation was seen to be more rigorous. Other stakeholders along the dairy food supply chain saw the assurance scheme as more rigorous. All stakeholders recognised the need to reduce duplication in delivering food safety through combining key elements of both systems with the added potential for better communication of both food safety and quality to the final consumer.
Resumo:
Climate data are used in a number of applications including climate risk management and adaptation to climate change. However, the availability of climate data, particularly throughout rural Africa, is very limited. Available weather stations are unevenly distributed and mainly located along main roads in cities and towns. This imposes severe limitations to the availability of climate information and services for the rural community where, arguably, these services are needed most. Weather station data also suffer from gaps in the time series. Satellite proxies, particularly satellite rainfall estimate, have been used as alternatives because of their availability even over remote parts of the world. However, satellite rainfall estimates also suffer from a number of critical shortcomings that include heterogeneous time series, short time period of observation, and poor accuracy particularly at higher temporal and spatial resolutions. An attempt is made here to alleviate these problems by combining station measurements with the complete spatial coverage of satellite rainfall estimates. Rain gauge observations are merged with a locally calibrated version of the TAMSAT satellite rainfall estimates to produce over 30-years (1983-todate) of rainfall estimates over Ethiopia at a spatial resolution of 10 km and a ten-daily time scale. This involves quality control of rain gauge data, generating locally calibrated version of the TAMSAT rainfall estimates, and combining these with rain gauge observations from national station network. The infrared-only satellite rainfall estimates produced using a relatively simple TAMSAT algorithm performed as good as or even better than other satellite rainfall products that use passive microwave inputs and more sophisticated algorithms. There is no substantial difference between the gridded-gauge and combined gauge-satellite products over the test area in Ethiopia having a dense station network; however, the combined product exhibits better quality over parts of the country where stations are sparsely distributed.