171 resultados para CO(2) concentrating mechanism
Resumo:
New Mo(II) diimine derivatives of [Mo(q (3)allyl)X(CO)(2)(CH3CN)(2)] (allyl = C3H5 and C5H5O; X = Cl, Br) were prepared, and [MO(eta(3)-C3H5)Cl(CO)(2)(BIAN)] (BIAN = 1,4-(4-chloro)phenyl-2,3-naphthalene-diazabutadiene) (7) was structurally characterized by single-crystal X-ray diffraction. This complex adopted an equatorial-axial arrangement of the bidentate ligand (axial isomer), in contrast with the precursors, found as the equatorial isomer in the solid and fluxional in solution. The new complexes of the type [Mo(eta(3)-allyl)X(CO)(2)(N-N)l (N-N is a bidentate chelating dinitrogen ligand) were tested for the catalytic epoxidation of cyclooctene using tert-butyl hydroperoxide as oxidant. All catalytic systems were 100% selective toward epoxide formation. While their turnover frequencies paralleled those of related Mo(eta) carbonyl compounds or Mo(VI) compounds bearing similar N-donor ligands, they exhibited similar olefin conversions in consecutive catalytic runs. The acetonitrile precursors were generally more active than the diimine complexes, and the chloro derivatives more active than the bromo ones. Combined vibrational and NMR spectroscopy and computational studies (DFT) were used to investigate the nature of the molybdenum species formed in the catalytic system with [Mo(eta(3)-C3H5)Cl(CO)(2){1,4-(2,6-dimethyl)phenyl-2.3-dimethyldiazabuta diene}] (4) and to propose that the resulting species may be dimeric bearing oxide bridges.
Resumo:
Molybdenum(II) complexes [MOX(CO)(2)(eta(3)-allyl)(CH3CN)(2)] (X = Cl or Br) were encapsulated in an aluminium-pillared natural clay or a porous clay heterostructure and allowed to react with bidentate diimine ligands. All the materials obtained were characterised by several solid-state techniques. Powder XRD, and Al-27 and Si-29 MAS NMR were used to investigate the integrity of the pillared clay during the modification treatments. C-13 CP MAS NMR, FTIR, elemental analyses and low-temperature nitrogen adsorption showed that the immobilisation of the precursor complexes was successful as well as the in situ ligand-substitution reaction. The new complex [MoBr(CO)(2)(eta(3)-allyl)(2-aminodipyridyl)] was characterised by single-crystal X-ray diffraction and spectroscopic techniques, and NMR studies were used to investigate its fluxional behaviour in solution. The prepared materials are active for the oxidation of cis-cyclooctene using tert-butyl hydroperoxide as oxidant, though the activity of the isolated complexes is higher. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).
Resumo:
Transition metal alkynyl complexes containing perfluoroaryl groups have been prepared directly from trimethylsilyl-protected mono- and di-ethynyl perfluoroarenes by simple desilylation/metallation reaction sequences. Reactions between Me3SiC CC6F5 and RuCl(dppe)Cp'[Cp' = Cp, Cp*] in the presence of KF in MeOH give the monoruthenium complexes Ru(C CC6F5)(dppe)Cp'[Cp' = Cp (2); Cp* (3)], which are related to the known compound Ru(C CC6F5)(PPh3)(2)Cp (1). Treatment of Me3SiC CC6F5 with Pt-2(mu-dppm)(2)Cl-2 in the presence of NaOMe in MeOH gave the bis(alkynyl) complex Pt-2(mu-dppm)(2)(C CC6F5)(2) (4). The Pd(0)/Cu(I)-catalysed reactions between Au(C CC6F5)(PPh3) and Mo( CBr)(CO)(2) Tp* [Tp* = hydridotris(3.5-dimethylpyrazoyl)borate], Co-3(mu(3)-CBr)(mu-dppm)(CO)(7) or IC CFc [Fc = (eta(5)-C5H4)FeCp] afford Mo( CC CC6F5)(CO)(2)Tp* (5), Co-3(mu 3-CC CC6F5)(mu-dppm)(CO)(7) (6) and FcC CC CC6F5 (7), respectively. The diruthenium complexes 1,4-{Cp'(PP)RuC C}(2)C6F4 [(PP)Cp'=(PPh3)(2)Cp (8); (dppe)Cp (9); (dppe)Cp* (10)] are prepared from 1,4-(Me3SiC C)(2)C6F4 in a manner similar to that described for the monoruthenium complexes 1-3. The non-fluorinated complexes 1,4-{Cp'(PP)RuC C}(2)C6H4 [(PP)Cp' = (PPh3)(2)Cp (11); ( dppe) Cp (12); ( dppe) Cp* (13)], prepared for comparison, are obtained from 1,4-(Me3SiC C)(2)C6H4. Spectro-electrochemical studies of the ruthenium aryl and arylene alkynyl complexes 2-3 and 8-13, together with DFT-based computational studies on suitable model systems, indicate that perfluorination of the aromatic ring has little effect on the electronic structures of these compounds, and that the frontier orbitals have appreciable diethynylphenylene character. Molecular structure determinations are reported for the fluoroaromatic complexes 1, 2, 3, 6 and 10.
Resumo:
Four new antimony sulphides, [T(dien)(2)]Sb6S10 center dot xH(2)O [T = Ni (1), Co (2) x approximate to 0.45], [Co(en)(3)]SbsSI(3) (3) and [Ni(en)(3)]Sb12S19 (4), have been synthesised under solvothermal conditions. In compounds (1) - (3), Sb12S228- secondary building units are connected to form layered structures. In (1) and (2), Sb-6 S-2- layers containing Sb16S16 heterorings are separated by [T(dien]2](2+) cations, whilst in (3), Sb8 S2- layers 10 13 contain [Co(en)3]2+ cations within large Sb22S22 pores. Compound (4) adopts a three-dimensional structure in which [Ni(en)3 12 cations lie within ca. 5 A wide channels. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The reaction between [Mo(eta(3)-C3H5)(CO)(2)(NCMe)(2)Br] (1) and the ferrocenylamidobenzimidazole ligands FcCO(NH(2)benzim) (L1) and (FcCO)(2)(NHbenzim) (L2) led to a binuclear (2) and a trinuclear (3) Mo-Fe complex, respectively. The single-crystal X-ray structure of [Mo(eta(3)-C3H5)(CO)(2)(L2)Br] [L2 = {[(eta(5)-C5H5)Fe(eta(5)-C5H4CO)](2)(2-NH-benzimidazol-yl)}] shows that L2 is coordinated to the endo Mo(eta(3)-C3H5)(CO)(2) group in a kappa(2)-N,O-bidentate chelating fashion whereas the Mo-II centre displays a pseudooctahedral environment with Br occupying an equatorial position. Complex 2 was formulated as [MO(eta(3)-C3H5)(CO)(2)(L1)Br] on the basis of a combination of spectroscopic data, elemental analysis, conductivity and DFT calculations. L1 acts as a kappa(2)-N,N-bidentate ligand. In both L1 and L2, the HOMOs are mainly localised on iron while the C=O bond(s) contribute to the LUMO(s) and the next highest energy orbitals are Fe-allyl antibonding orbitals. When the ligands bind to Mo(eta(3)-C3H5)(CO)(2)Br, the greatest difference is that Mo becomes the strongest contributor to the HOMO. Electrochemical studies show that, in complex 2, no electronic interaction exists between the two ferrocenyl ligands and that the first electron has been removed from the Mo-II-centred HOMO. (c) Wiley-VCH Verlag GmbH & Co. KGaA.
Resumo:
The reaction of FcCOC1 (Fc = (C5H5) Fe(C5H4)) with benzimidazole or imidazole in 1: 1 ratio gives the ferrocenyl derivatives FcCO(benzim) (L1) or FcCO(im) (L2), respectively. Two molecules of L1 or L2 can replace two nitrile ligands in [Mo(eta(3)-C3H5)( CO)(2)(CH3CN)(2)Br] or [Mo(eta(3)-C5H5O)(CO)(2)(CH3CN)(2)Br] leading to the new trinuclear complexes [Mo(eta(3)-C3H5)(CO)(2)(L)(2)Br] (C1 for L = L1; C3 for L = L2) and [Mo(eta(3)-C5H5O)(CO)(2)(L)(2)Br] (C-2 for L = L1; C4 for L = L2) with L1 and L2 acting as N-monodentade ligands. L1, L2 and C2 were characterized by X-ray diffraction studies. [Mo(eta(3)-C5H5O)(CO) 2(L1)(2)Br] was shown to be a trinuclear species, with the two L1 molecules occupying one equatorial and one axial position in the coordination sphere of Mo(II). Cyclic voltammetric studies were performed for the two ligands L1 and L2, as well as for their molybdenum complexes, and kinetic and thermodynamic data for the corresponding redox processes obtained. In agreement with the nature of the frontier orbitals obtained from DFT calculations, L1 and L2 exhibit one oxidation process at the Fe(II) center, while C1, C3, and C4 display another oxidation wave at lower potentials, associated with the oxidation of Mo(II). (C) 2007 Elsevier B. V. All rights reserved.
Resumo:
Reactions of [Mo(eta(3)-C3H5)Br(CO)(2)(NCMe)(2)] with the bidentate nitrogen ligands 2-(2'-pyridyl)imidazole (L1), 2-(2'-pyridyl)benzimidazole (L2), N,N'-bis(2'-pyridinecarboxamido)-1,2-ethane (L3), and 2,2'-bisimidazole (L4) led to the new complexes [Mo(eta(3)-C3H5)Br(CO)(2)(L)] (L = L1, 1; L2, 2; L4, 4) and [{Mo(eta(3)-C3H5) Br(CO)(2)}(2)(mu-L-3)] (3). The reaction of complexes 2 and 3 with Tl[CF3SO3] afforded [Mo(eta(3)-C3H5)(CF3SO3)(CO)(2)(L2)] (2T) and [{Mo(eta(3)-C3H5)(CF3SO3)(CO)(2)}(2)(mu-L-3)] (3T). Complexes 3 and 2T were structurally characterized by single crystal X-ray diffraction, showing the facial allyl/carbonyls arrangement and the formation of the axial isomer. In 2T, two molecules are assembled in a hydrogen bond dimer. The four complexes 1-4 were tested as precursors in the catalytic epoxidation of cyclooctene and styrene, in the presence of t-butylhydroperoxide (TBHP), with moderate conversions and turnover frequencies for complexes 1-3 and very low ones for 4. The increasing number of N-H groups in the complexes seems to be responsible for the loss of catalytic activity, compared with other related systems. The cytotoxic activities of all the complexes were evaluated against HeLa cells. The results showed that compounds 1,2,4, and 2T exhibited significant activity, complexes 2 and 2T being particularly promising. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Objective To explore a possible correlation between endothelin 1 (ET-1), the most potent endothelium-derived contracting factor that modulates vascular smooth muscle tone, and arterial disease in patients with the antiphospholipid syndrome (APS). Methods Plasma levels of ET-1 were measured in APS patients with (n = 16) and without (n = 11) arterial thrombosis and in non-APS patients with arterial thrombosis (n = 9). In addition, steady-state prepro-ET-1 messenger RNA (mRNA) levels were determined in endothelial cells treated with a range of human monoclonal anticardiolipin antibodies (aCL) (as anti-β2-glycoprotein I antibodies) by semiquantitative 32P-dCTP-labeled reverse transcription-polymerase chain reaction. Results Compared with healthy controls, markedly increased plasma levels of ET-1 were found in APS patients with arterial thrombosis (2.00 ± 0.87 versus 0.96 ± 0.37 pg/ml; P = 0.0001) but not in other groups. Three human monoclonal aCL induced prepro-ET-1 mRNA levels significantly more than did control monoclonal antibody lacking aCL activity. Conclusion Plasma ET-1 levels correlated significantly with a history of arterial thrombosis in patients with APS. Prepro-ET-1 mRNA was induced by human monoclonal aCL in the in vitro experimental system. The induction of ET-1 by antiphospholipid antibodies might contribute to increased arterial tone, leading to vasospasm and, ultimately, to arterial occlusion.
Resumo:
The relationship between tropical convection, surface fluxes, and sea surface temperature (SST) on intraseasonal timescales has been examined as part of an investigation of the possibility that the intraseasonal oscillation is a coupled atmosphere–ocean phenomenon. The unique feature of this study is that 15 yr of data and the whole region from the Indian Ocean to the Pacific Ocean have been analyzed using lag-correlation analysis and compositing techniques. A coherent relationship between convection, surface fluxes, and SST has been found on intraseasonal timescales in the Indian Ocean, Maritime Continent, and west Pacific regions of the Tropics. Prior to the maximum in convection, there are positive shortwave and latent heat flux anomalies into the surface, followed by warm SST anomalies about 10 days before the convective maximum. Coincident with the convective maximum, there is a minimum in the shortwave flux, followed by a cooling due to increased evaporation associated with enhanced westerly wind stress, leading to negative SST anomalies about 10 days after the convection. The relationships are robust from year to year, including both phases of the El Niño–Southern Oscillation (ENSO) although the eastward extent of the region over which the relationship holds varies with the phase of ENSO, consistent with the variations in the eastward extent of the warm pool and westerly winds. The spatial scale of the anomalies is about 60° longitude, consistent with the scale of the intraseasonal oscillation. The spatial and temporal characteristics of the surface flux and SST perturbations are consistent with the surface flux variations forcing the ocean, and the magnitudes of the anomalies are consistent with mixed-layer depths appropriate to the Indian Ocean and west Pacific
Resumo:
Strong vertical gradients at the top of the atmospheric boundary layer affect the propagation of electromagnetic waves and can produce radar ducts. A three-dimensional, time-dependent, nonhydrostatic numerical model was used to simulate the propagation environment in the atmosphere over the Persian Gulf when aircraft observations of ducting had been made. A division of the observations into high- and low-wind cases was used as a framework for the simulations. Three sets of simulations were conducted with initial conditions of varying degrees of idealization and were compared with the observations taken in the Ship Antisubmarine Warfare Readiness/Effectiveness Measuring (SHAREM-115) program. The best results occurred with the initialization based on a sounding taken over the coast modified by the inclusion of data on low-level atmospheric conditions over the Gulf waters. The development of moist, cool, stable marine internal boundary layers (MIBL) in air flowing from land over the waters of the Gulf was simulated. The MIBLs were capped by temperature inversions and associated lapses of humidity and refractivity. The low-wind MIBL was shallower and the gradients at its top were sharper than in the high-wind case, in agreement with the observations. Because it is also forced by land–sea contrasts, a sea-breeze circulation frequently occurs in association with the MIBL. The size, location, and internal structure of the sea-breeze circulation were realistically simulated. The gradients of temperature and humidity that bound the MIBL cause perturbations in the refractivity distribution that, in turn, lead to trapping layers and ducts. The existence, location, and surface character of the ducts were well captured. Horizontal variations in duct characteristics due to the sea-breeze circulation were also evident. The simulations successfully distinguished between high- and low-wind occasions, a notable feature of the SHAREM-115 observations. The modeled magnitudes of duct depth and strength, although leaving scope for improvement, were most encouraging.
Resumo:
We have determined the structure of a complex rhodium carbonyl chloride [Rh(CO)(2)Cl] molecule adsorbed on the TiO2 (110) surface by the normal incidence x-ray standing wave technique. The data show that the technique is applicable to reducible oxide systems and that the dominant adsorbed species is undissociated with Rh binding atop bridging oxygen and to the Cl found close to the fivefold coordinated Ti ions in the surface. A minority geminal dicarboryl species, where Rh-Cl bond scission has occurred, is found bridging the bridging oxygen ions forming a high-symmetry site.
The synthesis, structure, and electrochemical properties of Fe(C CC N)(dppe)Cp and related compounds
Resumo:
The cyanoacetylide complex Fe(CCCN)(dppe)Cp (3) is readily obtained from sequential reaction of Fe(CCSiMe3)(dppe)Cp with methyllithium and phenyl cyanate. Complex 3 is a good metalloligand, and coordination to the metal fragments [RhCl(CO)(2)], [Ru(PPh3)(2)Cp](+), and [Ru(dppe)Cp*](+) affords the corresponding cyanoaceylide-bridged heterobimetallic complexes. In the case of the 36-electron complexes [Cp(dppe)Fe-CCCN-MLn](n+), spectroscopic and structural data are consistent with a degree of charge transfer from the iron centre to the rhodium or ruthenium centre via the C3N bridge, giving rise to a polarized ground state. Electrochemical and spectroelectrochemical methods reveal significant interactions between the metal centres in the oxidized (35 electron) derivatives, [Cp(dppe)Fe-CCCN-MLn]((n+1)+).
Resumo:
Recent literature has described a “transition zone” between the average top of deep convection in the Tropics and the stratosphere. Here transport across this zone is investigated using an offline trajectory model. Particles were advected by the resolved winds from the European Centre for Medium-Range Weather Forecasts reanalyses. For each boreal winter clusters of particles were released in the upper troposphere over the four main regions of tropical deep convection (Indonesia, central Pacific, South America, and Africa). Most particles remain in the troposphere, descending on average for every cluster. The horizontal components of 5-day trajectories are strongly influenced by the El Niño–Southern Oscillation (ENSO), but the Lagrangian average descent does not have a clear ENSO signature. Tropopause crossing locations are first identified by recording events when trajectories from the same release regions cross the World Meteorological Organization lapse rate tropopause. Most crossing events occur 5–15 days after release, and 30-day trajectories are sufficiently long to estimate crossing number densities. In a further two experiments slight excursions across the lapse rate tropopause are differentiated from the drift deeper into the stratosphere by defining the “tropopause zone” as a layer bounded by the average potential temperature of the lapse rate tropopause and the profile temperature minimum. Transport upward across this zone is studied using forward trajectories released from the lower bound and back trajectories arriving at the upper bound. Histograms of particle potential temperature (θ) show marked differences between the transition zone, where there is a slow spread in θ values about a peak that shifts slowly upward, and the troposphere below 350 K. There forward trajectories experience slow radiative cooling interspersed with bursts of convective heating resulting in a well-mixed distribution. In contrast θ histograms for back trajectories arriving in the stratosphere have two distinct peaks just above 300 and 350 K, indicating the sharp change from rapid convective heating in the well-mixed troposphere to slow ascent in the transition zone. Although trajectories slowly cross the tropopause zone throughout the Tropics, all three experiments show that most trajectories reaching the stratosphere from the lower troposphere within 30 days do so over the west Pacific warm pool. This preferred location moves about 30°–50° farther east in an El Niño year (1982/83) and about 30° farther west in a La Niña year (1988/89). These results could have important implications for upper-troposphere–lower-stratosphere pollution and chemistry studies.
Resumo:
The usefulness of any simulation of atmospheric tracers using low-resolution winds relies on both the dominance of large spatial scales in the strain and time dependence that results in a cascade in tracer scales. Here, a quantitative study on the accuracy of such tracer studies is made using the contour advection technique. It is shown that, although contour stretching rates are very insensitive to the spatial truncation of the wind field, the displacement errors in filament position are sensitive. A knowledge of displacement characteristics is essential if Lagrangian simulations are to be used for the inference of airmass origin. A quantitative lower estimate is obtained for the tracer scale factor (TSF): the ratio of the smallest resolved scale in the advecting wind field to the smallest “trustworthy” scale in the tracer field. For a baroclinic wave life cycle the TSF = 6.1 ± 0.3 while for the Northern Hemisphere wintertime lower stratosphere the TSF = 5.5 ± 0.5, when using the most stringent definition of the trustworthy scale. The similarity in the TSF for the two flows is striking and an explanation is discussed in terms of the activity of potential vorticity (PV) filaments. Uncertainty in contour initialization is investigated for the stratospheric case. The effect of smoothing initial contours is to introduce a spinup time, after which wind field truncation errors take over from initialization errors (2–3 days). It is also shown that false detail from the proliferation of finescale filaments limits the useful lifetime of such contour advection simulations to 3σ−1 days, where σ is the filament thinning rate, unless filaments narrower than the trustworthy scale are removed by contour surgery. In addition, PV analysis error and diabatic effects are so strong that only PV filaments wider than 50 km are at all believable, even for very high-resolution winds. The minimum wind field resolution required to accurately simulate filaments down to the erosion scale in the stratosphere (given an initial contour) is estimated and the implications for the modeling of atmospheric chemistry are briefly discussed.