158 resultados para C51 - Model Construction and Estimation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the initialization of Northern-hemisphere sea ice in the global climate model ECHAM5/MPI-OM by assimilating sea-ice concentration data. The analysis updates for concentration are given by Newtonian relaxation, and we discuss different ways of specifying the analysis updates for mean thickness. Because the conservation of mean ice thickness or actual ice thickness in the analysis updates leads to poor assimilation performance, we introduce a proportional dependence between concentration and mean thickness analysis updates. Assimilation with these proportional mean-thickness analysis updates significantly reduces assimilation error both in identical-twin experiments and when assimilating sea-ice observations, reducing the concentration error by a factor of four to six, and the thickness error by a factor of two. To understand the physical aspects of assimilation errors, we construct a simple prognostic model of the sea-ice thermodynamics, and analyse its response to the assimilation. We find that the strong dependence of thermodynamic ice growth on ice concentration necessitates an adjustment of mean ice thickness in the analysis update. To understand the statistical aspects of assimilation errors, we study the model background error covariance between ice concentration and ice thickness. We find that the spatial structure of covariances is best represented by the proportional mean-thickness analysis updates. Both physical and statistical evidence supports the experimental finding that proportional mean-thickness updates are superior to the other two methods considered and enable us to assimilate sea ice in a global climate model using simple Newtonian relaxation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the initialisation of Northern Hemisphere sea ice in the global climate model ECHAM5/MPI-OM by assimilating sea-ice concentration data. The analysis updates for concentration are given by Newtonian relaxation, and we discuss different ways of specifying the analysis updates for mean thickness. Because the conservation of mean ice thickness or actual ice thickness in the analysis updates leads to poor assimilation performance, we introduce a proportional dependence between concentration and mean thickness analysis updates. Assimilation with these proportional mean-thickness analysis updates leads to good assimilation performance for sea-ice concentration and thickness, both in identical-twin experiments and when assimilating sea-ice observations. The simulation of other Arctic surface fields in the coupled model is, however, not significantly improved by the assimilation. To understand the physical aspects of assimilation errors, we construct a simple prognostic model of the sea-ice thermodynamics, and analyse its response to the assimilation. We find that an adjustment of mean ice thickness in the analysis update is essential to arrive at plausible state estimates. To understand the statistical aspects of assimilation errors, we study the model background error covariance between ice concentration and ice thickness. We find that the spatial structure of covariances is best represented by the proportional mean-thickness analysis updates. Both physical and statistical evidence supports the experimental finding that assimilation with proportional mean-thickness updates outperforms the other two methods considered. The method described here is very simple to implement, and gives results that are sufficiently good to be used for initialising sea ice in a global climate model for seasonal to decadal predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper employs an extensive Monte Carlo study to test the size and power of the BDS and close return methods of testing for departures from independent and identical distribution. It is found that the finite sample properties of the BDS test are far superior and that the close return method cannot be recommended as a model diagnostic. Neither test can be reliably used for very small samples, while the close return test has low power even at large sample sizes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

14C-dated pollen and lake-level data from Europe are used to assess the spatial patterns of climate change between 6000 yr BP and present, as simulated by the NCAR CCM1 (National Center for Atmospheric Research, Community Climate Model, version 1) in response to the change in the Earth’s orbital parameters during this perod. First, reconstructed 6000 yr BP values of bioclimate variables obtained from pollen and lake-level data with the constrained-analogue technique are compared with simulated values. Then a 6000 yr BP biome map obtained from pollen data with an objective biome reconstruction (biomization) technique is compared with BIOME model results derived from the same simulation. Data and simulations agree in some features: warmer-than-present growing seasons in N and C Europe allowed forests to extend further north and to higher elevations than today, and warmer winters in C and E Europe prevented boreal conifers from spreading west. More generally, however, the agreement is poor. Predominantly deciduous forest types in Fennoscandia imply warmer winters than the model allows. The model fails to simulate winters cold enough, or summers wet enough, to allow temperate deciduous forests their former extended distribution in S Europe, and it incorrectly simulates a much expanded area of steppe vegetation in SE Europe. Similar errors have also been noted in numerous 6000 yr BP simulations with prescribed modern sea surface temperatures. These errors are evidently not resolved by the inclusion of interactive sea-surface conditions in the CCM1. Accurate representation of mid-Holocene climates in Europe may require the inclusion of dynamical ocean–atmosphere and/or vegetation–atmosphere interactions that most palaeoclimate model simulations have so far disregarded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the first realtime ionospheric predictions network and its capabilities to ingest a global database and forecast F-layer characteristics and "in situ" electron densities along the track of an orbiting spacecraft. A global network of ionosonde stations reported around-the-clock observations of F-region heights and densities, and an on-line library of models provided forecasting capabilities. Each model was tested against the incoming data; relative accuracies were intercompared to determine the best overall fit to the prevailing conditions; and the best-fit model was used to predict ionospheric conditions on an orbit-to-orbit basis for the 12-hour period following a twice-daily model test and validation procedure. It was found that the best-fit model often provided averaged (i.e., climatologically-based) accuracies better than 5% in predicting the heights and critical frequencies of the F-region peaks in the latitudinal domain of the TSS-1R flight path. There was a sharp contrast however, in model-measurement comparisons involving predictions of actual, unaveraged, along-track densities at the 295 km orbital altitude of TSS-1R In this case, extrema in the first-principle models varied by as much as an order of magnitude in density predictions, and the best-fit models were found to disagree with the "in situ" observations of Ne by as much as 140%. The discrepancies are interpreted as a manifestation of difficulties in accurately and self-consistently modeling the external controls of solar and magnetospheric inputs and the spatial and temporal variabilities in electric fields, thermospheric winds, plasmaspheric fluxes, and chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a palaeoecological investigation of pre-Columbian land use in the savannah “forest island” landscape of north-east Bolivian Amazonia. A 5700 year sediment core from La Luna Lake, located adjacent to the La Luna forest island site, was analysed for fossil pollen and charcoal. We aimed to determine the palaeoenvironmental context of pre-Columbian occupation on the site and assess the environmental impact of land use in the forest island region. Evidence for anthropogenic burning and Zea mays L. cultivation began ~2000 cal a BP, at a time when the island was covered by savannah, under drier-than-present climatic conditions. After ~1240 cal a BP burning declined and afforestation occurred. We show that construction of the ring ditch, which encircles the island, did not involve substantial deforestation. Previous estimates of pre-Columbian population size in this region, based upon labour required for forest clearance, should therefore be reconsidered. Despite the high density of economically useful plants, such as Theobroma cacao, in the modern forest, no direct pollen evidence for agroforestry was found. However, human occupation is shown to pre-date and span forest expansion on this site, suggesting that here, and in the wider forest island region, there is no truly pre-anthropogenic ‘pristine’ forest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the development and basic evaluation of decadal predictions produced using the HiGEM coupled climate model. HiGEM is a higher resolution version of the HadGEM1 Met Office Unified Model. The horizontal resolution in HiGEM has been increased to 1.25◦ × 0.83◦ in longitude and latitude for the atmosphere, and 1/3◦ × 1/3◦ globally for the ocean. The HiGEM decadal predictions are initialised using an anomaly assimilation scheme that relaxes anomalies of ocean temperature and salinity to observed anomalies. 10 year hindcasts are produced for 10 start dates (1960, 1965,..., 2000, 2005). To determine the relative contributions to prediction skill from initial conditions and external forcing, the HiGEM decadal predictions are compared to uninitialised HiGEM transient experiments. The HiGEM decadal predictions have substantial skill for predictions of annual mean surface air temperature and 100 m upper ocean temperature. For lead times up to 10 years, anomaly correlations (ACC) over large areas of the North Atlantic Ocean, the Western Pacific Ocean and the Indian Ocean exceed values of 0.6. Initialisation of the HiGEM decadal predictions significantly increases skill over regions of the Atlantic Ocean,the Maritime Continent and regions of the subtropical North and South Pacific Ocean. In particular, HiGEM produces skillful predictions of the North Atlantic subpolar gyre for up to 4 years lead time (with ACC > 0.7), which are significantly larger than the uninitialised HiGEM transient experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A methodology for using remotely sensed data to both generate and evaluate a hydraulic model of floodplain inundation is presented for a rural case study in the United Kingdom: Upton-upon-Severn. Remotely sensed data have been processed and assembled to provide an excellent test data set for both model construction and validation. In order to assess the usefulness of the data and the issues encountered in their use, two models for floodplain inundation were constructed: one based on an industry standard one-dimensional approach and the other based on a simple two-dimensional approach. The results and their implications for the future use of remotely sensed data for predicting flood inundation are discussed. Key conclusions for the use of remotely sensed data are that care must be taken to integrate different data sources for both model construction and validation and that improvements in ground height data shift the focus in terms of model uncertainties to other sources such as boundary conditions. The differences between the two models are found to be of minor significance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A very efficient learning algorithm for model subset selection is introduced based on a new composite cost function that simultaneously optimizes the model approximation ability and model robustness and adequacy. The derived model parameters are estimated via forward orthogonal least squares, but the model subset selection cost function includes a D-optimality design criterion that maximizes the determinant of the design matrix of the subset to ensure the model robustness, adequacy, and parsimony of the final model. The proposed approach is based on the forward orthogonal least square (OLS) algorithm, such that new D-optimality-based cost function is constructed based on the orthogonalization process to gain computational advantages and hence to maintain the inherent advantage of computational efficiency associated with the conventional forward OLS approach. Illustrative examples are included to demonstrate the effectiveness of the new approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DISOPE is a technique for solving optimal control problems where there are differences in structure and parameter values between reality and the model employed in the computations. The model reality differences can also allow for deliberate simplification of model characteristics and performance indices in order to facilitate the solution of the optimal control problem. The technique was developed originally in continuous time and later extended to discrete time. The main property of the procedure is that by iterating on appropriately modified model based problems the correct optimal solution is achieved in spite of the model-reality differences. Algorithms have been developed in both continuous and discrete time for a general nonlinear optimal control problem with terminal weighting, bounded controls and terminal constraints. The aim of this paper is to show how the DISOPE technique can aid receding horizon optimal control computation in nonlinear model predictive control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Models developed to identify the rates and origins of nutrient export from land to stream require an accurate assessment of the nutrient load present in the water body in order to calibrate model parameters and structure. These data are rarely available at a representative scale and in an appropriate chemical form except in research catchments. Observational errors associated with nutrient load estimates based on these data lead to a high degree of uncertainty in modelling and nutrient budgeting studies. Here, daily paired instantaneous P and flow data for 17 UK research catchments covering a total of 39 water years (WY) have been used to explore the nature and extent of the observational error associated with nutrient flux estimates based on partial fractions and infrequent sampling. The daily records were artificially decimated to create 7 stratified sampling records, 7 weekly records, and 30 monthly records from each WY and catchment. These were used to evaluate the impact of sampling frequency on load estimate uncertainty. The analysis underlines the high uncertainty of load estimates based on monthly data and individual P fractions rather than total P. Catchments with a high baseflow index and/or low population density were found to return a lower RMSE on load estimates when sampled infrequently than those with a tow baseflow index and high population density. Catchment size was not shown to be important, though a limitation of this study is that daily records may fail to capture the full range of P export behaviour in smaller catchments with flashy hydrographs, leading to an underestimate of uncertainty in Load estimates for such catchments. Further analysis of sub-daily records is needed to investigate this fully. Here, recommendations are given on load estimation methodologies for different catchment types sampled at different frequencies, and the ways in which this analysis can be used to identify observational error and uncertainty for model calibration and nutrient budgeting studies. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the mixed logit (ML) using Bayesian methods was employed to examine willingness-to-pay (WTP) to consume bread produced with reduced levels of pesticides so as to ameliorate environmental quality, from data generated by a choice experiment. Model comparison used the marginal likelihood, which is preferable for Bayesian model comparison and testing. Models containing constant and random parameters for a number of distributions were considered, along with models in ‘preference space’ and ‘WTP space’ as well as those allowing for misreporting. We found: strong support for the ML estimated in WTP space; little support for fixing the price coefficient a common practice advocated and adopted in the environmental economics literature; and, weak evidence for misreporting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is one of the major challenges facing economic systems at the start of the 21st century. Reducing greenhouse gas emissions will require both restructuring the energy supply system (production) and addressing the efficiency and sufficiency of the social uses of energy (consumption). The energy production system is a complicated supply network of interlinked sectors with 'knock-on' effects throughout the economy. End use energy consumption is governed by complex sets of interdependent cultural, social, psychological and economic variables driven by shifts in consumer preference and technological development trajectories. To date, few models have been developed for exploring alternative joint energy production-consumption systems. The aim of this work is to propose one such model. This is achieved in a methodologically coherent manner through integration of qualitative input-output models of production, with Bayesian belief network models of consumption, at point of final demand. The resulting integrated framework can be applied either (relatively) quickly and qualitatively to explore alternative energy scenarios, or as a fully developed quantitative model to derive or assess specific energy policy options. The qualitative applications are explored here.