98 resultados para Bridged Bisdioxines
Resumo:
Five new thioantimonates have been synthesized in the presence of organic amines under solvothermal conditions and their structures determined by single-crystal X-ray diffraction. All of the compounds are layered and contain antimony-sulphide anions of stoichiometry [Sb4S7](2-), but the structure of the anion formed is dependent on the amine used in synthesis. (H3N(CH2)(4)NH3)[Sb4S7] (1) contains [Sb4S7](2-) double chains directed along [010]. Weak interchain Sb-S interactions between neighbouring chains cause the double chains to pack into layers in the ab plane. In the [001] direction, the layers of double chains alternate with doubly protonated diaminobutane molecules to which the chains are hydrogen bonded. Compounds of general formula (TH)(2)[Sb4S7] (T= CH3(CH2)(2)NH2 (2), (CH3)(2)CHNH2 (3), CH3(CH2)(3)NH2 (4) and CH3(CH2)(4)NH2 (5)) adopt a more complex structure in which [Sb3S8](7-) units are linked by Sb-3(3-) pyramids to form chains, which in turn are bridged by sulphur atoms to create sheets containing large heterorings. Pairs of such sheets form double layers of four atoms thickness that are stacked along [001]. Protonated amine molecules are located between anionic antimony-sulphide layers to which they are hydrogen bonded. Thermal analysis reveals that the decomposition temperature of materials containing [Sb4S7](2-) anions is dependent both on the structure of the anion, the lowest decomposition temperature being that of the low-dimensional phase (1) and on the identity of the amine, the decomposition temperature decreasing with an increasing number of carbon atoms and decreasing density. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Three new basal-apical, mu(2)-1,1-azide bridged complexes, [CuL1(N-3)](2) (1), [CuL2(N-3)](2) (2) and [CuL3(N-3)]2 (3) with very similar tridentate Schiff base blocking ligands [L-1=N-(3-aminopropyl) salicylaldimine, L-2=7-amino-4-methyl-5-azahept-3-en-2-one and L-3=8-amino-4-methyl-5-azaoct-3-en-2-one) have been synthesised and their molecular structures determined by X-ray crystallography. In complex 1, there is no inter-dimer H-bonding. However, complexes 2 and 3 form two different supramolecular structures in which the dinuclear entities are linked by strong H-bonds giving one-dimensional systems. Variable-temperature (300-2 K) magnetic susceptibility measurements and magnetization measurements at 2 K reveal that complexes 1 and 2 have antiferromagnetic coupling while 3 has ferromagnetic coupling which is also confirmed by EPR spectra at 4-300 K. Magnetostructural correlations have been made taking into consideration both the azido bridging ligands and the existence of intermolecular hydrogen bonds in complexes 2 and 3.
Resumo:
Three new copper(II) complexes [(CuLN3)-N-1](2) (1), [(CuLN3)-N-2] (2) and [(CuLN3)-N-3] (3) with three very similar tridentate Schiff base ligands [HL1=6-diethylamino-3-methyl-1-phenyl-4-azahex-3-en1- one, HL2= 6-amino-3-methyl-1-phenyl-4-azahex-3-en-1-one and HL3= 6-amino-3-methyl1- phenyl-4-azasept-3-en-1-one] have been synthesized and structurally characterized by X-ray crystallography. In complex 1 half of the molecules are basal-apical, end-on azido bridged dimers and the remaining half are square-planar monomers whereas all the molecules in complexes 2 and 3 are monomers with square-planar geometry around Cu(II). A competition between the coordinate bond and H-bond seems to be responsible for the difference in structure of the complexes.
Resumo:
Three kinds of copper(II) azide complexes have been synthesised in excellent yields by reacting Cu(ClO4)(2) . 6H(2)O with N,N-bis(2-pyridylmethyl)amine (L-1); N-(2-pyridylmethyl)-N',N'-dimethylethylenediamine (L-2); and N-(2-pyridylmethyl)-N',N'-diethylethylenediamine (L-3), respectively, in the presence of slight excess of sodium azide. They are the monomeric Cu(L-1)(N-3)(ClO4) (1), the end-to-end diazido-bridged Cu-2(L-2)(2)(mu-1,3-N-3)(2)(ClO4)(2) (2) and the single azido-bridged (mu-1,3-) 1D chain [Cu(L-3)(mu-1,3-N-3)](n)(ClO4)(n) (3). The crystal and molecular structures of these complexes have been solved. The variable temperature magnetic moments of type 2 and type 3 complexes were studied. Temperature dependent susceptibility for 2 was fitted using the Bleaney-Bowers expression which led to the parameters J = -3.43 cm(-1) and R = 1 X 10(-5). The magnetic data for 3 were fitted to Baker's expression for S = 1/2 and the parameters obtained were J = 1.6 cm(-1) and R = 3.2 x 10(-4). Crystal data are as follows. Cu(L-1)(N-3)(ClO4): Chemical formula, C12H13ClN6O4Cu; crystal system, monoclinic; space group, P2(1)/c; a = 8.788(12), b = 13.045(15), c = 14.213(15) Angstrom; beta = 102.960(10)degrees; Z = 4. Cu(L-2)(mu-N-3)(ClO4): Chemical formula. C10H17ClN6O4Cu: crystal system, monoclinic; space group, P2(1)/c; a = 10.790(12), b = 8.568(9), c = 16.651(17) Angstrom; beta = 102.360(10)degrees; Z = 4. [Cu(L-3)(mu-N-3)](ClO4): Chemical formula, C12H21ClN6O4Cu; crystal system, monoclinic; space group, P2(1)/c; a = 12.331(14), b = 7.804(9), c = 18.64(2) Angstrom; beta = 103.405(10)degrees; Z = 4. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Reaction of the tridentate ONO Schiff-base ligand 2-hydroxybenzoylhydrazone of 2-hydroxybenzoylhydrazine (H2L) with VO(acac)(2) in ethanol medium produces the oxoethoxovanadium(V) complex [VO(OEt)L] (A), which reacts with pyridine to form [VO(OEt)L center dot(py)] (1). Complex 1 is structurally characterized. It has a distorted octahedral O4N2 coordination environment around the V(V) acceptor center. Both complexes A and 1 in ethanol medium react with neutral monodentate Lewis bases 2-picoline, 3-picoline, 4-picoline, 4-amino pyridine, imidazole, and 4-methyl imidazole, all of which are stronger bases than pyridine, to produce dioxovanadium(V) complexes of general formula BH[VO2L]. Most of these dioxo complexes are structurally characterized, and the complex anion [VO2L](-) is found to possess a distorted square pyramidal structure. When a solution/suspension of a BH[VO2L] complex in an alcohol (ROH) is treated with HCl in the same alcohol, it is converted into the corresponding monooxoalkoxo complex [ O(OR)L], where R comes from the alcohol used as the reaction medium. Both complexes A and 1 produce the 4,4'-bipyridine-bridged binuclear complex [VO(OEt)L](2)(mu-4,4'-bipy) (2), which, to the best of our knowledge, represents the first report of a structurally characterized 4,4'-bipyridine-bridged oxovanadium(V) binuclear complex. Two similar binuclear oxovanadium(V) complexes 3 and 4 are also synthesized and characterized. All these binuclear complexes (2-4), on treatment with base B, produce the corresponding mononuclear dioxovanadium(V) complexes (5-10).
Resumo:
Using the 1:2 condensate (L) of diethylenetriamine and benzaldehyde as the main ligand, binuclear copper(l) complexes [Cu2L2(4,4'-bipyridine)](CIO4)(2).0.5H(2)O (1a) and [Cu2L2(1,2-bis(4-pyridyl)ethane)](CIO4)(2) (1b) are synthesised. The two metal ions in la are bridged by 4,4'-bipyridine and those in 1b by 1,2-bis(4-pyridyl)ethane, From the X-ray crystal structure of la, each metal ion is found to be bound to three N atoms of L and one of the two N atoms of the bridging ligand in a distorted tetrahedral fashion. The Cu(I)-N bond lengths in la lie in the range of 1.998(5)-2.229(6) Angstrom. Electrochemical studies in dichloromethane (DCM) show that the (Cu2N8)-N-I moieties in la and 1b are composed of two essentially non-interacting (CuN4)-N-I cores with Cu-II/I potential of 0.44 V vs. SCE. While la displays metal induced quenching of the inherent emission of 4,4'-bipyridine in DCM solution, 1b exhibits two weak emission bands in DCM solution at 425 and 477 nm (total quantum yield = 3.59 x 10(-5)) originating from MLCT excited states. With the help of Extended Huckel calculations it is established that the higher energy emission in 1b is from Cu(I) --> bridging-ligand charge transfer excited state and the lower energy one in 1b from Cu(I) --> L charge transfer excited state.
Resumo:
The ligands 1,4,8,11-tetraazacyclotetradecane-1,4,8-triacetic-11-methylphosphonic acid (H(5)te3a1p) and 1,4,8,11-tetraazacyclotetradecane-1,4,8-triacetic acid (H(3)te3a) were synthesized, the former one for the first time. The syntheses of these ligands were achieved from reactions on 1,4,8,11-tetraazacyclotetradecane-1,4,8-tris( carbamoylmethyl) hydroiodide (te3am center dot HI), and compounds (Hte3am)(+), 1, and (H(7)te3a1p)(2+), 4, were characterized by X-ray diffraction. Structures of two other compounds resulting from side-reactions, (H(2)te2lac)(2+), 2, and (H(4)te2a2p(OEt2))(2+), 3, were also determined by X-ray diffraction. Potentiometric titrations of H(5)te3a1p and H(3)te3a were performed at 298.2 K and ionic strength 0.10 mol dm(-3) in NMe4NO3 to determine their protonation constants. H-1 and P-31 NMR titrations of H(5)te3a1p were carried out in order to determine the very high first protonation constant of this ligand and to elucidate the sequence of protonation. Potentiometric studies of the two ligands with Ca2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+ metal ions performed in the same experimental conditions showed that the complexes of H5te3a1p present very high thermodynamic stability while complexes of H(3)te3a, particularly Co2+ and Zn2+, are even more stable. P-31 NMR spectra of the cadmium(II) complex of H(5)te3a1p showed that the phosphonate moiety was coordinated to the metal ion. The UV-vis-NIR spectroscopic data and magnetic moment values of Co2+ and Ni2+ complexes of H(5)te3a1p and H(3)te3a together with the EPR of the corresponding Cu2+ complexes indicated that all these complexes adopt distorted octahedral coordination geometries in solution. This was confirmed by the single crystal structure of [Cu-2(Hte3a)(H2O)(3)Cl]Cl-0.5(ClO4)(0.5) center dot 2H(2)O that showed two distorted octahedral copper centres bridged by a N-acetate pendant arm with a Cu center dot center dot center dot Cu distance of 4.890(1) angstrom. The first one is encapsulated into the macrocyclic cavity surrounded by four nitrogen and two oxygen donors from the macrocycle, whereas the second one is on the periphery of the macrocycle and is coordinated to two oxygen atoms of one acetate pendant arm in chelating fashion, one chloride and three water molecules.
The synthesis, structure, and electrochemical properties of Fe(C CC N)(dppe)Cp and related compounds
Resumo:
The cyanoacetylide complex Fe(CCCN)(dppe)Cp (3) is readily obtained from sequential reaction of Fe(CCSiMe3)(dppe)Cp with methyllithium and phenyl cyanate. Complex 3 is a good metalloligand, and coordination to the metal fragments [RhCl(CO)(2)], [Ru(PPh3)(2)Cp](+), and [Ru(dppe)Cp*](+) affords the corresponding cyanoaceylide-bridged heterobimetallic complexes. In the case of the 36-electron complexes [Cp(dppe)Fe-CCCN-MLn](n+), spectroscopic and structural data are consistent with a degree of charge transfer from the iron centre to the rhodium or ruthenium centre via the C3N bridge, giving rise to a polarized ground state. Electrochemical and spectroelectrochemical methods reveal significant interactions between the metal centres in the oxidized (35 electron) derivatives, [Cp(dppe)Fe-CCCN-MLn]((n+1)+).
Resumo:
In order to build up a multicomponent system able to perform useful light-induced functions, a dithienylethene-bridged heterodinuclear metal complex (Ru/Os) has been prepared. The compound was characterized and its photophysical properties studied in detail.
Resumo:
Combined picosecond transient absorption and time-resolved infrared studies were performed, aimed at characterising low-lying excited states of the cluster [Os-3(CO)(10)(s-cis-L)] (L= cyclohexa-1,3-diene, 1) and monitoring the formation of its photoproducts. Theoretical (DFT and TD-DFT) calculations on the closely related cluster with L=buta-1,3-diene (2') have revealed that the low-lying electronic transitions of these [Os-3(CO)(10)(s-cis-1,3-diene)] clusters have a predominant sigma(core)pi*(CO) character. From the lowest sigmapi* excited state, cluster 1 undergoes fast Os-Os(1,3-diene) bond cleavage (tau=3.3 ps) resulting in the formation of a coordinatively unsaturated primary photoproduct (1a) with a single CO bridge. A new insight into the structure of the transient has been obtained by DFT calculations. The cleaved Os-Os(1,3-diene) bond is bridged by the donor 1,3-diene ligand, compensating for the electron deficiency at the neighbouring Os centre. Because of the unequal distribution of the electron density in transient la, a second CO bridge is formed in 20 ps in the photoproduct [Os-3(CO)(8)(mu-CO)(2)- (cyclohexa-1,3-diene)] (1b). The latter compound, absorbing strongly around 630 nm, mainly regenerates the parent cluster with a lifetime of about 100 ns in hexane. Its structure, as suggested by the DFT calculations, again contains the 1,3-diene ligand coordinated in a bridging fashion. Photoproduct 1b can therefore be assigned as a high-energy coordination isomer of the parent cluster with all Os-Os bonds bridged.
Resumo:
Two homometallic complexes containing two and three ruthenium polypyridyl units linked by amino acid lysine (Lys) and the related dipeptide (LysLys) were synthesized and their electrochemical, spectroscopic, and electrochemiluminescence (ECL) properties were investigated. The electrochemical and photophysical data indicate that the two metal complexes largely retain the electronic properties of the reference compound for the separate ruthenium moieties in the two bridged complexes, [4-carboxypropyl-4'-methyl-2,2'-bipyridine]bis(2,2'-bipyridine)ruthenium(II) complex. The ECL studies, performed in aqueous media in the presence of tri-n-propylamine as co-reactant, show that the ECL intensity increases by 30% for the dinuclear and trinuclear complexes compared to the reference. Heterogeneous ECL immunoassay studies, performed on larger dendritic complexes containing up to eight ruthenium units, demonstrate that limitations due to the slow diffusion can easily be overcome by means of nanoparticle technology. In this case, the ECL signal is proportional to the number of ruthenium units. Multimetallic systems with several ruthenium centers may, however, undergo nonspecific bonding,to streptavidin-coated particles or to antibodies, thereby increasing the background ECL intensity and lowering the sensitivity of the immunoassay.
Resumo:
The Schiff base ligand, HL (2-[1-(3-methylamino-propylimino)-ethyl]-phenol), the 1:1 condensation product of 2-hydroxy acetophenone and N-methyl-1,3-diaminopropane, has been synthesized and characterized by X-ray crystallography as the perchlorate salt [H2L]ClO4 (1). The structure consists of discrete [H2L](+) cations and perchlorate anions. Two dinuclear Ni-II complexes, [Ni2L2(NO2)(2)] (2), [Ni2L2(NO3)(2)] (3) have been synthesized using this ligand and characterized by single crystal X-ray analyses. Complexes 2 and 3 are centrosymmetric dimers in which the Ni-II ions are in distorted fac- and mer-octahedral environments, respectively, bridged by two mu(2)-phenolate ions of deprotonated ligand, L. The plane of the phenyl rings and the Ni2O2 basal plane are nearly coplanar in 2 but almost perpendicular in 3. We have studied and explained this different behavior using high level DFT calculations (RI-BP86/def2-TZVP level of theory). The conformation observed in 3, which is energetically less favorable, is stabilized via intermolecular non-covalent interactions. Under the excitation of ultraviolet light, characteristic fluorescence of compound 1 was observed; by comparison fluorescence intensity decreases in case of compound 3 and completely quenched in compound 2.
Resumo:
The hexaazamacrocycles [28](DBF)2N6 {cyclo[bis(4,6-dimethyldibenzo[b,d]furaniminoethyleneiminoethylene]} and [32](DBF)2N6 {cyclo[bis(4,6-dimethyldibenzo[b,d]furaniminopropyleneiminopropylene]} form stable dinuclear copper(II) complexes suitable to behave as receptors for several anionic substrates. These two receptors were used to study the binding interactions with several substrates, such as imidazole (Him) and some carboxylates [benzoate (bz−), oxalate (ox2−), malonate (mal2−), phthalate (ph2−), isophthalate (iph2−), and terephthalate (tph2−)] by spectrophotometric titrations and EPR spectroscopy in MeOH (or H2O):DMSO (1:1 v/v) solution. The largest association constant was found for ox2− with Cu2[32](DBF)2N64+, whereas for the aromatic dicarboxylate anions the binding constants follow the trend ph2− > iph2− > tph2−, i.e. decrease with the increase of the distance of the two binding sites of the substrate. On the other hand, the large blue shift of 68 nm observed by addition of Him to Cu2[32](DBF)2N64+ points out for the formation of the bridged CuimCu cascade complex, indicating this receptor as a potential sensor for the detection and determination of imidazole in solution. The X-band EPR spectra of the Cu2[28](DBF)2N64+ and Cu2[32](DBF)2N6]4+ complexes and the cascade complexes with the substrates, performed in H2O:DMSO (1:1 v/v) at 5 to 15 K, showed that the CuCu distance is slightly larger than the one found in crystal state and that this distance increases when the substrate is accommodated between the two copper centres. The crystal structure of [Cu2[28](DBF)2N6(ph)2]·CH3OH was determined by X-ray diffraction and revealed the two copper centres bridged by two ph2− anions at a Cu···Cu distance of 5.419(1) Å. Each copper centre is surrounded by three carboxylate oxygen atoms from two phthalate anions and three contiguous nitrogen atoms of the macrocycle in a pseudo octahedral coordination environment.
Resumo:
Three novel mixed bridged trinuclear and one tetranuclear copper(II) complexes of tridentate NNO donor Schiff base ligands [Cu-3(L-1)(2)(mu(LI)-N-3)(2)(CH3OH)(2)(BF2)(2)] (1), [Cu-3(L-1)(2)(mu(LI)-NO3-I kappa O.2 kappa O')(2)] (2), [Cu-3(L-2)(2)(mu(LI)-N-3)(2)(mu-NOI-I kappa O 2 kappa O')(2)] (3) and [Cu-4(L-3)(2)(mu(LI)-N-3)(4)(mu-CH3COO-I kappa O 2 kappa O')(2)] (4) have been synthesized by reaction of the respective tridentate ligands (L-1 = 2[1-(2-dimethylamino-ethylimino)-ethyl]-phenol, L-2 = 2[1-(2-diethylamino-ethylimino)-ethyl]-phenol, L-3 = 2-[1-(2-dimethylamino-ethylimino)-methyl]-phenol) with the corresponding copper(II) salts in the presence of NaN3 The complexes are characterized by single-crystal X-ray diffraction analyses and variable-temperature magnetic measurements Complex 1 is composed of two terminal [Cu(L-1)(mu(LI)-N-3)] units connected by a central [Cu(BF4)(2)] unit through nitrogen atoms of end-on azido ligands and a phenoxo oxygen atom of the tridentate ligand The structures of 2 and 3 are very similar, the only difference is that the central unit is [Cu(NO1)(2)] and the nitrate group forms an additional mu-NO3-I kappa O 2 kappa O' bridge between the terminal and central copper atoms In complex 4, the central unit is a di-mu(L1)-N-3 bridged dicopper entity, [Cu-2(mu(L1)-N-3)(2)(CH3COO)(2)] that connects two terminal [Cu(L-3)(mu(L1)-N-3)] units through end-on azido; phenoxo oxygen and mu-CH3COO-1 kappa O center dot 2 kappa O' triple bridges to result in a tetranuclear unit Analyses of variable-temperature magnetic susceptibility data indicates that there is a global weak antiferromagnetic interaction between the copper(II) ions in complexes 1-3, with the exchange parameter J of -9 86, -11 6 and -19 98 cm(-1) for 1-3, respectively In complex 4 theoretical calculations show the presence of an antiferromagnetic coupling in the triple bridging ligands (acetato, phenoxo and azido) while the interaction through the double end-on azido bridging ligand is strongly ferromagnetic.
Resumo:
Four new Cu(II)-azido complexes of formula [CuL(N-3)] (1), [CuL(N-3)](2) (2), [Cu7L2(N-3)(12)](n) (3), and [Cu2L(dmen)-(N-3)(3)](n) (4) (dmen = N,N-dimethylethylenediamine) have been synthesized using the same tridentate Schiff base ligand HL (2-[1-(2-dimethylaminoethylimino)ethyl]phenol, the condensation product of dmen and 2-hydroxyacetophenone). The four compounds have been characterized by X-ray structural analyses and variable-temperature magnetic susceptibility measurements. Complex 1 is mononuclear, whereas 2 is a single mu-1,1 azido-bridged dinuclear compound. The polymeric compound 3 possesses a 2D structure in which the Cu(II) ions are linked by phenoxo oxygen atoms and two different azide bridges (mu-1,1 and mu-1,1,3). The structure of complex 4 is a double helix in which two mu-1,3-azido-bridged alternating one-dimensional helical chains of CuL(N-3) and Cu(dmen)(N-3)(2) are joined together by weak mu-1,1 azido bridges and H-bonds. The complexes interconvert in solution and can be obtained in pure form by carefully controlling the conditions. The magnetic properties of compounds 1 and 2 show the presence of very weak antiferromagnetic exchange interactions mediated by a ligand pi overlap (J = -1.77) and by an asymmetric 1,1-N-3 bridge (J = -1.97 cm(-1)), respectively. Compound 3 presents, from the magnetic point of view, a decorated chain structure with both ferro- and antiferromagnetic interactions. Compound 4 is an alternating helicoidal chain with two weak antiferromagnetic exchange interactions (J -1.35 and -2.64 cm(-1)).