63 resultados para Bottom-up learning


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advances in hardware technologies allow to capture and process data in real-time and the resulting high throughput data streams require novel data mining approaches. The research area of Data Stream Mining (DSM) is developing data mining algorithms that allow us to analyse these continuous streams of data in real-time. The creation and real-time adaption of classification models from data streams is one of the most challenging DSM tasks. Current classifiers for streaming data address this problem by using incremental learning algorithms. However, even so these algorithms are fast, they are challenged by high velocity data streams, where data instances are incoming at a fast rate. This is problematic if the applications desire that there is no or only a very little delay between changes in the patterns of the stream and absorption of these patterns by the classifier. Problems of scalability to Big Data of traditional data mining algorithms for static (non streaming) datasets have been addressed through the development of parallel classifiers. However, there is very little work on the parallelisation of data stream classification techniques. In this paper we investigate K-Nearest Neighbours (KNN) as the basis for a real-time adaptive and parallel methodology for scalable data stream classification tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes an application of Social Network Analysis methods for identification of knowledge demands in public organisations. Affiliation networks established in a postgraduate programme were analysed. The course was executed in a distance education mode and its students worked on public agencies. Relations established among course participants were mediated through a virtual learning environment using Moodle. Data available in Moodle may be extracted using knowledge discovery in databases techniques. Potential degrees of closeness existing among different organisations and among researched subjects were assessed. This suggests how organisations could cooperate for knowledge management and also how to identify their common interests. The study points out that closeness among organisations and research topics may be assessed through affiliation networks. This opens up opportunities for applying knowledge management between organisations and creating communities of practice. Concepts of knowledge management and social network analysis provide the theoretical and methodological basis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid growth in the production of new homes in the UK is putting build quality under pressure as evidenced by an increase in the number of defects. Housing associations (HAs) contribute approximately 20% of the UK’s new housing supply. HAs are currently experiencing central government funding cuts and rental revenue reductions. As part of HAs’ quest to ramp up supply despite tight budget conditions, they are reviewing how they learn from defects. Learning from defects is argued as a means of reducing the persistent defect problem within the UK housebuilding industry, yet how HAs learn from defects is under-researched. The aim of this research is to better understand how HAs, in practice, learn from past defects to reduce the prevalence of defects in future new homes. The theoretical lens for this research is organizational learning. The results drawn from 12 HA case studies indicate that effective organizational learning has the potential to reduce defects within the housing sector. The results further identify that HAs are restricting their learning to focus primarily on reducing defects through product and system adaptations. Focusing on product and system adaptations alone suppresses HAs’ abilities to reduce defects in the future.