67 resultados para Big Alas Lake
Resumo:
Widespread commercial use of the internet has significantly increased the volume and scope of data being collected by organisations. ‘Big data’ has emerged as a term to encapsulate both the technical and commercial aspects of this growing data collection activity. To date, much of the discussion of big data has centred upon its transformational potential for innovation and efficiency, yet there has been less reflection on its wider implications beyond commercial value creation. This paper builds upon normal accident theory (NAT) to analyse the broader ethical implications of big data. It argues that the strategies behind big data require organisational systems that leave them vulnerable to normal accidents, that is to say some form of accident or disaster that is both unanticipated and inevitable. Whilst NAT has previously focused on the consequences of physical accidents, this paper suggests a new form of system accident that we label data accidents. These have distinct, less tangible and more complex characteristics and raise significant questions over the role of individual privacy in a ‘data society’. The paper concludes by considering the ways in which the risks of such data accidents might be managed or mitigated.
Resumo:
The size and complexity of data sets generated within ecosystem-level programmes merits their capture, curation, storage and analysis, synthesis and visualisation using Big Data approaches. This review looks at previous attempts to organise and analyse such data through the International Biological Programme and draws on the mistakes made and the lessons learned for effective Big Data approaches to current Research Councils United Kingdom (RCUK) ecosystem-level programmes, using Biodiversity and Ecosystem Service Sustainability (BESS) and Environmental Virtual Observatory Pilot (EVOp) as exemplars. The challenges raised by such data are identified, explored and suggestions are made for the two major issues of extending analyses across different spatio-temporal scales and for the effective integration of quantitative and qualitative data.
Resumo:
The General Election for the 56th United Kingdom Parliament was held on 7 May 2015. Tweets related to UK politics, not only those with the specific hashtag ”#GE2015”, have been collected in the period between March 1 and May 31, 2015. The resulting dataset contains over 28 million tweets for a total of 118 GB in uncompressed format or 15 GB in compressed format. This study describes the method that was used to collect the tweets and presents some analysis, including a political sentiment index, and outlines interesting research directions on Big Social Data based on Twitter microblogging.
Resumo:
Datasets containing information to locate and identify water bodies have been generated from data locating static-water-bodies with resolution of about 300 m (1/360 deg) recently released by the Land Cover Climate Change Initiative (LC CCI) of the European Space Agency. The LC CCI water-bodies dataset has been obtained from multi-temporal metrics based on time series of the backscattered intensity recorded by ASAR on Envisat between 2005 and 2010. The new derived datasets provide coherently: distance to land, distance to water, water-body identifiers and lake-centre locations. The water-body identifier dataset locates the water bodies assigning the identifiers of the Global Lakes and Wetlands Database (GLWD), and lake centres are defined for in-land waters for which GLWD IDs were determined. The new datasets therefore link recent lake/reservoir/wetlands extent to the GLWD, together with a set of coordinates which locates unambiguously the water bodies in the database. Information on distance-to-land for each water cell and the distance-to-water for each land cell has many potential applications in remote sensing, where the applicability of geophysical retrieval algorithms may be affected by the presence of water or land within a satellite field of view (image pixel). During the generation and validation of the datasets some limitations of the GLWD database and of the LC CCI water-bodies mask have been found. Some examples of the inaccuracies/limitations are presented and discussed. Temporal change in water-body extent is common. Future versions of the LC CCI dataset are planned to represent temporal variation, and this will permit these derived datasets to be updated.
Resumo:
Large freshwater lakes formed in North America and Europe during deglaciation following the Last Glacial Maximum. Rapid drainage of these lakes into the Oceans resulted in abrupt perturbations in climate, including the Younger Dryas and 8.2 kyr cooling events. In the mid-latitudes of the Southern Hemisphere major glacial lakes also formed and drained during deglaciation but little is known about the magnitude, organization and timing of these drainage events and their e ect on regional climate. We use 16 new single-grain optically stimulated luminescence (OSL) dates to de ne three stages of rapid glacial lake drainage in the Lago General Carrera/Lago Buenos Aires and Lago Cohrane/ Pueyrredón basins of Patagonia and provide the rst assessment of the e ects of lake drainage on the Paci c Ocean. Lake drainage occurred between 13 and 8 kyr ago and was initially gradual eastward into the Atlantic, then subsequently reorganized westward into the Paci c as new drainage routes opened up during Patagonian Ice Sheet deglaciation. Coupled ocean-atmosphere model experiments using HadCM3 with an imposed freshwater surface “hosing” to simulate glacial lake drainage suggest that a negative salinity anomaly was advected south around Cape Horn, resulting in brief but signi cant impacts on coastal ocean vertical mixing and regional climate.
Resumo:
This paper discusses how global financial institutions are using big data analytics within their compliance operations. A lot of previous research has focused on the strategic implications of big data, but not much research has considered how such tools are entwined with regulatory breaches and investigations in financial services. Our work covers two in-depth qualitative case studies, each addressing a distinct type of analytics. The first case focuses on analytics which manage everyday compliance breaches and so are expected by managers. The second case focuses on analytics which facilitate investigation and litigation where serious unexpected breaches may have occurred. In doing so, the study focuses on the micro/data to understand how these tools are influencing operational risks and practices. The paper draws from two bodies of literature, the social studies of information systems and finance to guide our analysis and practitioner recommendations. The cases illustrate how technologies are implicated in multijurisdictional challenges and regulatory conflicts at each end of the operational risk spectrum. We find that compliance analytics are both shaping and reporting regulatory matters yet often firms may have difficulties in recruiting individuals with relevant but diverse skill sets. The cases also underscore the increasing need for financial organizations to adopt robust information governance policies and processes to ease future remediation efforts.
Resumo:
Ecological and biogeochemical processes in lakes are strongly dependent upon water temperature. Long-term surface warming of many lakes is unequivocal, but little is known about the comparative magnitude of temperature variation at diel timescales, due to a lack of appropriately resolved data. Here we quantify the pattern and magnitude of diel temperature variability of surface waters using high-frequency data from 100 lakes. We show that the near-surface diel temperature range can be substantial in summer relative to long-term change and, for lakes smaller than 3 km2, increases sharply and predictably with decreasing lake area. Most small lakes included in this study experience average summer diel ranges in their near-surface temperatures of between 4 and 7°C. Large diel temperature fluctuations in the majority of lakes undoubtedly influence their structure, function and role in biogeochemical cycles, but the full implications remain largely unexplored.