127 resultados para Bidentate ligand


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The blue coloured complex [Cu(HL)(H2O)(ClO4)]ClO.H2O.MeOH (1.H2O.MeOH) has been synthesised in excellent yields by reacting Cu(ClO4)(2).6H(2)O with N,N-bis(2-methylpyridyl)(3,5-dimethyl-2-hydroxybenzyl)amine (HL) in methanol. The same reaction, when carried out in the presence of sodium azide, afforded a dark-blue complex of formula [Cu-2(HL)(2)(mu-1,1-N-3)(2)](ClO4)(2) (2). The crystal and molecular structures of the complexes have been solved. Variable-temperature magnetic susceptibility data in the range of 2-300 K for 2 reveal the existence of an antiferromagnetic interaction through an end-on azido linker. Temperature-dependent susceptibility studies for 2 were fitted using the Bleaney-Bowers expression, which led to the parameters J = -3.2 cm(-1), g = 2.12 and R = 2.14 x 10(-4). (C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of the tridentate ONO Schiff-base ligand 2-hydroxybenzoylhydrazone of 2-hydroxybenzoylhydrazine (H2L) with VO(acac)(2) in ethanol medium produces the oxoethoxovanadium(V) complex [VO(OEt)L] (A), which reacts with pyridine to form [VO(OEt)L center dot(py)] (1). Complex 1 is structurally characterized. It has a distorted octahedral O4N2 coordination environment around the V(V) acceptor center. Both complexes A and 1 in ethanol medium react with neutral monodentate Lewis bases 2-picoline, 3-picoline, 4-picoline, 4-amino pyridine, imidazole, and 4-methyl imidazole, all of which are stronger bases than pyridine, to produce dioxovanadium(V) complexes of general formula BH[VO2L]. Most of these dioxo complexes are structurally characterized, and the complex anion [VO2L](-) is found to possess a distorted square pyramidal structure. When a solution/suspension of a BH[VO2L] complex in an alcohol (ROH) is treated with HCl in the same alcohol, it is converted into the corresponding monooxoalkoxo complex [ O(OR)L], where R comes from the alcohol used as the reaction medium. Both complexes A and 1 produce the 4,4'-bipyridine-bridged binuclear complex [VO(OEt)L](2)(mu-4,4'-bipy) (2), which, to the best of our knowledge, represents the first report of a structurally characterized 4,4'-bipyridine-bridged oxovanadium(V) binuclear complex. Two similar binuclear oxovanadium(V) complexes 3 and 4 are also synthesized and characterized. All these binuclear complexes (2-4), on treatment with base B, produce the corresponding mononuclear dioxovanadium(V) complexes (5-10).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment of [Ir(bpa)(cod)](+) complex [1](+) with a strong base (e.g., tBuO(-)) led to unexpected double deprotonation to form the anionic [Ir-(bpa-2H)(cod)](-) species [3](-), via the mono-deprotonated neutral amido complex [Ir(bpa-H)(cod)] as an isolable intermediate. A certain degree of aromaticity of the obtained metal-chelate ring may explain the favourable double deprotonation. The rhodium analogue [4](-) was prepared in situ. The new species [M(bpa-2H)(cod)](-) (M = Rh, Ir) are best described as two-electron reduced analogues of the cationic imine complexes [M-I(cod)(Py-CH2-N=CH-Py)](+). One-electron oxidation of [3](-) and [4](-) produced the ligand radical complexes [3]* and [4]*. Oxygenation of [3](-) with O-2 gave the neutral carboxamido complex [Ir(cod)(py-CH2-N-CO-py)] via the ligand radical complex [3]* as a detectable intermediate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the 1:2 condensate (L) of diethylenetriamine and benzaldehyde as the main ligand, binuclear copper(l) complexes [Cu2L2(4,4'-bipyridine)](CIO4)(2).0.5H(2)O (1a) and [Cu2L2(1,2-bis(4-pyridyl)ethane)](CIO4)(2) (1b) are synthesised. The two metal ions in la are bridged by 4,4'-bipyridine and those in 1b by 1,2-bis(4-pyridyl)ethane, From the X-ray crystal structure of la, each metal ion is found to be bound to three N atoms of L and one of the two N atoms of the bridging ligand in a distorted tetrahedral fashion. The Cu(I)-N bond lengths in la lie in the range of 1.998(5)-2.229(6) Angstrom. Electrochemical studies in dichloromethane (DCM) show that the (Cu2N8)-N-I moieties in la and 1b are composed of two essentially non-interacting (CuN4)-N-I cores with Cu-II/I potential of 0.44 V vs. SCE. While la displays metal induced quenching of the inherent emission of 4,4'-bipyridine in DCM solution, 1b exhibits two weak emission bands in DCM solution at 425 and 477 nm (total quantum yield = 3.59 x 10(-5)) originating from MLCT excited states. With the help of Extended Huckel calculations it is established that the higher energy emission in 1b is from Cu(I) --> bridging-ligand charge transfer excited state and the lower energy one in 1b from Cu(I) --> L charge transfer excited state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is increasing evidence that G protein-coupled receptors form oligomers and that this might be important for their function. We have studied this phenomenon for the D-2 dopamine receptor and have shown-using a variety of biochemical and biophysical techniques-that this receptor forms dimers or higher-order oligomers. Using ligand-binding studies, we have also found evidence that this oligomer formation has functional relevance. Thus, for the receptor expressed in either CHO cells or Sf 9 insect cells, the binding properties of several radioligands (in saturation, competition, and dissociation assays) do not conform to those expected for a monomeric receptor with a single binding site. We propose that the receptors exist in oligomers with homotropic and heterotropic negatively cooperative interactions between ligands

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many G protein-coupled receptors have been shown to exist as oligomers, but the oligomerization state and the effects of this on receptor function are unclear. For some G protein-coupled receptors, in ligand binding assays, different radioligands provide different maximal binding capacities. Here we have developed mathematical models for co-expressed dimeric and tetrameric species of receptors. We have considered models where the dimers and tetramers are in equilibrium and where they do not interconvert and we have also considered the potential influence of the ligands on the degree of oligomerization. By analogy with agonist efficacy, we have considered ligands that promote, inhibit or have no effect on oligomerization. Cell surface receptor expression and the intrinsic capacity of receptors to oligomerize are quantitative parameters of the equations. The models can account for differences in the maximal binding capacities of radioligands in different preparations of receptors and provide a conceptual framework for simulation and data fitting in complex oligomeric receptor situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myoglobin has been studied in considerable detail using different experimental and computational techniques over the past decades. Recent developments in time-resolved spectroscopy have provided experimental data amenable to detailed atomistic simulations. The main theme of the present review are results on the structures, energetics and dynamics of ligands ( CO, NO) interacting with myoglobin from computer simulations. Modern computational methods including free energy simulations, mixed quantum mechanics/molecular mechanics simulations, and reactive molecular dynamics simulations provide insight into the dynamics of ligand dynamics in confined spaces complementary to experiment. Application of these methods to calculate and understand experimental observations for myoglobin interacting with CO and NO are presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

State-of-the-art computational methodologies are used to investigate the energetics and dynamics of photodissociated CO and NO in myoglobin (Mb···CO and Mb···NO). This includes the combination of molecular dynamics, ab initio MD, free energy sampling, and effective dynamics methods to compare the results with studies using X-ray crystallography and ultrafast spectroscopy metho ds. It is shown that modern simulation techniques along with careful description of the intermolecular interactions can give quantitative agreement with experiments on complex molecular systems. Based on this agreement predictions for as yet uncharacterized species can be made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present molecular dynamics simulations of the photodissociated state of MbNO performed at 300 K using a fluctuating charge model for the nitric oxide (NO) ligand. After dissociation, NO is observed to remain mainly in the centre of the distal haem pocket, although some movement towards the primary docking site and the xenon-4 pocket can be seen. We calculate the NO infrared spectrum for the photodissociated ligand within the haem pocket and find a narrow peak in the range 1915-1922 cm(-1). The resulting blue shift of 1 to 8 cm(-1) compared to gas-phase NO is much smaller than the red shifts calculated and observed for carbon monoxide (CO) in Mb. A small splitting, due to NO in the xenon-4 pocket, is also observed. At lower temperatures, the spectra and conformational space explored by the ligand remain largely unchanged, but the electrostatic interactions with residue His64 become increasingly significant in determining the details of the ligand orientation within the distal haem pocket. The investigation of the effect of the L29F mutation reveals significant differences between the behaviour of NO and that of CO, and suggests a coupling between the ligand and the protein dynamics due to the different ligand dipole moments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the search for a versatile building block that allows the preparation of heteroditopic tpy-pincer bridging ligands, the synthon 14'-[C6H3(CH2Br)(2)-3,5]-2,2':6',2 ''-terpyridine was synthesized. Facile introduction of diphenylphosphanyl groups in this synthon gave the ligand 14'-[C6H3(CH2PPh2)2-3,5]-2,2':6',2"-terpyridine) ([tpyPC(H)Pj). The asymmetric mononuclear complex [Fe(tpy){tpyPC(H)P}](PF6)(2), prepared by selective coordination of [Fe(tpy)Cl-3] to the tpy moiety of [tpyPC(H)P], was used for the synthesis of the heterodimetallic complex [Fe(tpy)(tpyPCP)Ru(tpy)](PFC,)3, which applies the "complex as ligand" approach. Coordination of the ruthenium centre at the PC(H)P-pincer moiety of [Fe(tpy){tpyPC(H)P}](PF6)(2) has been achieved by applying a transcyclometallation procedure. The ground-state electronic properties of both complexes, investigated by cyclic and square-wave voltammetries and UV/Vis spectroscopy, are discussed and compared with those of [Fe(tPY)(2)](PF6)(2) and [Ru(PCP)(tpy)]Cl, which represent the mononuclear components of the heterodinuclear species. An in situ UV/Vis spectroelectrochemical study was performed in order to localize the oxidation and reduction steps and to gain information about the Fe-II-Ru-II communication in the heterodimetallic system [Fe(tpy)(tpyPCP)Ru(tpy)](PF6)(3) mediated by the bridging ligand [tpyPCP]. Both the voltammetric and spectroelectrochemical results point to only very limited electronic interaction between the metal centres in the ground state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The new square-planar Ni-II-N2O2 complex [Ni(L-Me)] (1(Me)), where L-Me, stands for the dianionic phenolato form of N,N'bis(3,5-di-tert-butyl-salicylidene)-4,5-dimethyl-1,2-phenyl- enediamine ((LH2)-L-Me), has been synthesised and fully characterised. X-ray crystallography was also used for the characterisation. The electrochemical one-electron oxidation of 1(Me) produces the thermally stable (within the temperature range 10-295 K) cationic species (1(Me))(+). The UV/Vis and X-band EPR experimental data, supported by DFT calculations, indicate that (1(Me))(+), is best described as a Ni-II monoradical complex and, thus, does NOT exist in a Ni-III ground state, in contrast to its demethylated counterpart [Ni(L-H)](+) (1(H))(+) below 170 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ electrolysis within an optically transparent thin-layer electrochemical (OTTLE) cell was applied at 293-243 K in combination with FTIR spectroscopy to monitor spectral changes in the carbonyl stretching region accompanying oxidation of four tetracarbonyl olefin complexes of tungsten(0), viz., trans-[W(CO)(4)(eta(2)-ethene)(2)], trans-[W(CO)(4)(eta(2)-norbornene)(2)], [W(CO)(4)(eta(4)-cycloocta-1,5-diene)], and [W(CO)(4)(eta(4)-norbornadiene)]. In all cases, the one-electron-oxidized radical cations (17-electron complexes) have been identified by their characteristic nu(CO) patterns. For the bidentate diene ligands, the cis stereochemistry is essentially fixed in both the 18- and 17-electron complexes. The radical cation of the trans-bis(ethene) complex was observed only at 243 K, while at room temperature it isomerized rapidly to the corresponding cis-isomer. The thermal stability of the three studied radical cations in the cis configuration correlates with the relative strength of the W-CO bonds in the positions trans to the olefin ligand, which are more affected by the oxidation than the axial W-CO bonds. For the bulky norbornene ligands, their trans configuration in the bis(norbornene) complex remains preserved after the oxidation in the whole temperature range studied. The limited thermal stability of the radical cations of the trans-bis(alkene) complexes is ascribed to dissociation of the alkene ligands. The spectroelectrochemical results are in very good agreement with data obtained earlier by DFT (B3LYP) calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A palladium-catalyzed Stille coupling reaction was employed as a versatile method for the synthesis of a novel terpyridine-pincer (3, TPBr) bridging ligand, 4'-{4-BrC6H2(CH2NMe2)(2)-3,5}-2,2':6',2 ''-terpyridine. Mononuclear species [PdX(TP)] (X = Br, Cl), [Ru(TPBr)(tpy)](PF6)(2), and [Ru(TPBr)(2)](PF6)(2), synthesized by selective metalation of the NCNBr-pincer moiety or complexation of the terpyridine of the bifunctional ligand TPBr, were used as building blocks for the preparation of heterodi- and trimetallic complexes [Ru(TPPdCl)(tpy)](PF6)(2) (7) and [Ru(TPPdCl)(2)]-(PF6)(2) (8). The molecular structures in the solid state of [PdBr(TP)] (4a) and [Ru(TPBr)(2)](PF6)(2) (6) have been determined by single-crystal X-ray analysis. Electrochemical behavior and photophysical properties of the mono-and heterometallic complexes are described. All the above di- and trimetallic Ru complexes exhibit absorption bands attributable to (MLCT)-M-1 (Ru -> tpy) transitions. For the heteroleptic complexes, the transitions involving the unsubstituted tpy ligand are at a lower energy than the tpy moiety of the TPBr ligand. The absorption bands observed in the electronic spectra for TPBr and [PdCl(TP)] have been assigned with the aid of TD-DFT calculations. All complexes display weak emission both at room temperature and in a butyronitrile glass at 77 K. The considerable red shift of the emission maxima relative to the signal of the reference compound [Ru(tpy)(2)](2+) indicates stabilization of the luminescent (MLCT)-M-3 state. For the mono- and heterometallic complexes, electrochemical and spectroscopic studies (electronic absorption and emission spectra and luminescence lifetimes recorded at room temperature and 77 K in nitrile solvents), together with the information gained from IR spectroelectrochemical studies of the dimetallic complex [Ru(TPPdSCN)(tpy)](PF6)(2), are indicative of charge redistribution through the bridging ligand TPBr. The results are in line with a weak coupling between the {Ru(tpy)(2)} chromophoric unit and the (non)metalated NCN-pincer moiety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to build up a multicomponent system able to perform useful light-induced functions, a dithienylethene-bridged heterodinuclear metal complex (Ru/Os) has been prepared. The compound was characterized and its photophysical properties studied in detail.