137 resultados para Biased selection
Resumo:
Costs of resistance are widely assumed to be important in the evolution of parasite and pathogen defence in animals, but they have been demonstrated experimentally on very few occasions. Endoparasitoids are insects whose larvae develop inside the bodies of other insects where they defend themselves from attack by their hosts' immune systems (especially cellular encapsulation). Working with Drosophila melanogaster and its endoparasitoid Leptopilina boulardi, we selected for increased resistance in four replicate populations of flies. The percentage of flies surviving attack increased from about 0.5% to between 40% and 50% in five generations, revealing substantial additive genetic variation in resistance in the field population from which our culture was established. In comparison with four control lines, flies from selected lines suffered from lower larval survival under conditions of moderate to severe intraspecific competition.
Resumo:
The populations of many species are structured such that mating is not random and occurs between members of local patches. When patches are founded by a single female and all matings occur between siblings, brothers may compete with each other for matings with their sisters. This local mate competition (LMC) selects for a female-biased sex ratio, especially in species where females have control over offspring sex, as in the parasitic Hymenoptera. Two factors are predicted to decrease the degree of female bias: (1) an increase in the number of foundress females in the patch and (2) an increase in the fraction of individuals mating after dispersal from the natal patch. Pollinating fig wasps are well known as classic examples of species where all matings occur in the local patch. We studied non-pollinating fig wasps, which are more diverse than the pollinating fig wasps and also provide natural experimental groups of species with different male morphologies that are linked to different mating structures. In this group of wasps, species with wingless males mate in the local patch (i.e. the fig fruit) while winged male species mate after dispersal. Species with both kinds of male have a mixture of local and non-local mating. Data from 44 species show that sex ratios (defined as the proportion of males) are in accordance with theoretical predictions: wingless male species < wing-dimorphic male species < winged male species. These results are also supported by a formal comparative analysis that controls for phylogeny. The foundress number is difficult to estimate directly for non-pollinating fig wasps but a robust indirect method leads to the prediction that foundress number, and hence sex ratio, should increase with the proportion of patches occupied in a crop. This result is supported strongly across 19 species with wingless males, but not across 8 species with winged males. The mean sex ratios for species with winged males are not significantly different from 0.5, and the absence of the correlation observed across species with wingless males may reflect weak selection to adjust the sex ratio in species whose population mating structure tends not to be subdivided. The same relationship is also predicted to occur within species if individual females adjust their sex ratios facultatively. This final prediction was not supported by data from a wingless male species, a male wing-dimorphic species or a winged male species.
Resumo:
An increase in resistance to one natural enemy may result in no correlated change, a positive correlated change, or a negative correlated change in the ability of the host or prey to resist other natural enemies. The type of specificity is important in understanding the evolutionary response to natural enemies and was studied here in a Drosaphila-parasitoid system. Drosophila melanogaster lines selected for increased larval resistance to the endoparasitoid wasps Asobara tabida or Leptopilina boulardi were exposed to attack by A. tabida, L. boulardi and Leptopilina heterotama at 15 degrees C, 20 degrees C, and 25 degrees C. In general, encapsulation ability increased with temperature, with the exception of the lines selected against L. boulardi, which showed the opposite trend. Lines selected against L, boulardi showed large increases in resistance against all three parasitoid species, and showed similar levels of defense against A. tabida to the lines selected against that parasitoid. In contrast, lines selected against A. tabida showed a large increase in resistance to A. tabida and generally to L. heterotoma, but displayed only a small change in their ability to survive attack by L. boulardi. Such asymmetries in correlated responses to selection for increased resistance to natural enemies may influence host-parasitoid community structure.
Resumo:
This paper investigates the characteristics of unaccusative verbs in Italian with respect to the consistency with which these verbs select the auxiliaries ‘be’ (essere) and ‘have’ (avere) in compound tense forms. The study builds on the gradient approach to split intransitivity (Sorace 2000) by exploring the behaviour of 29 intransitive Italian verbs with respect to their core-peripheral features: auxiliary selection acceptability ratings and associated variance measures. Although there is clear support for the gradient approach in relation to the general order of semantic categories along the unaccusativity gradient, the results reveal that the ordering of subclasses within the Change group conflict with that currently proposed in the literature. In addition, the findings demonstrate the aspectual and lexical semantic characteristics of internally-caused change-of-state verbs in Italian require further investigation before their auxiliary selection behaviour can be properly understood. Furthermore, contrary to the gradient account, Existence verbs, the most stative and therefore the most peripheral subclass in the unaccusativity hierarchy, exhibit behaviour more characteristic of core unaccusative verbs. This study examines a wider range of semantic subclasses of unaccusative verbs than has hitherto been reported and identifies the core-peripheral boundary for Italian.1
Resumo:
Radial basis functions can be combined into a network structure that has several advantages over conventional neural network solutions. However, to operate effectively the number and positions of the basis function centres must be carefully selected. Although no rigorous algorithm exists for this purpose, several heuristic methods have been suggested. In this paper a new method is proposed in which radial basis function centres are selected by the mean-tracking clustering algorithm. The mean-tracking algorithm is compared with k means clustering and it is shown that it achieves significantly better results in terms of radial basis function performance. As well as being computationally simpler, the mean-tracking algorithm in general selects better centre positions, thus providing the radial basis functions with better modelling accuracy
Resumo:
In financial decision-making, a number of mathematical models have been developed for financial management in construction. However, optimizing both qualitative and quantitative factors and the semi-structured nature of construction finance optimization problems are key challenges in solving construction finance decisions. The selection of funding schemes by a modified construction loan acquisition model is solved by an adaptive genetic algorithm (AGA) approach. The basic objectives of the model are to optimize the loan and to minimize the interest payments for all projects. Multiple projects being undertaken by a medium-size construction firm in Hong Kong were used as a real case study to demonstrate the application of the model to the borrowing decision problems. A compromise monthly borrowing schedule was finally achieved. The results indicate that Small and Medium Enterprise (SME) Loan Guarantee Scheme (SGS) was first identified as the source of external financing. Selection of sources of funding can then be made to avoid the possibility of financial problems in the firm by classifying qualitative factors into external, interactive and internal types and taking additional qualitative factors including sovereignty, credit ability and networking into consideration. Thus a more accurate, objective and reliable borrowing decision can be provided for the decision-maker to analyse the financial options.
Resumo:
An input variable selection procedure is introduced for the identification and construction of multi-input multi-output (MIMO) neurofuzzy operating point dependent models. The algorithm is an extension of a forward modified Gram-Schmidt orthogonal least squares procedure for a linear model structure which is modified to accommodate nonlinear system modeling by incorporating piecewise locally linear model fitting. The proposed input nodes selection procedure effectively tackles the problem of the curse of dimensionality associated with lattice-based modeling algorithms such as radial basis function neurofuzzy networks, enabling the resulting neurofuzzy operating point dependent model to be widely applied in control and estimation. Some numerical examples are given to demonstrate the effectiveness of the proposed construction algorithm.
Resumo:
Analyzes the use of linear and neural network models for financial distress classification, with emphasis on the issues of input variable selection and model pruning. A data-driven method for selecting input variables (financial ratios, in this case) is proposed. A case study involving 60 British firms in the period 1997-2000 is used for illustration. It is shown that the use of the Optimal Brain Damage pruning technique can considerably improve the generalization ability of a neural model. Moreover, the set of financial ratios obtained with the proposed selection procedure is shown to be an appropriate alternative to the ratios usually employed by practitioners.
Resumo:
This paper is concerned with the use of a genetic algorithm to select financial ratios for corporate distress classification models. For this purpose, the fitness value associated to a set of ratios is made to reflect the requirements of maximizing the amount of information available for the model and minimizing the collinearity between the model inputs. A case study involving 60 failed and continuing British firms in the period 1997-2000 is used for illustration. The classification model based on ratios selected by the genetic algorithm compares favorably with a model employing ratios usually found in the financial distress literature.
Resumo:
This paper explores principal‐agent issues in the stock selection processes of institutional property investors. Drawing upon an interview survey of fund managers and acquisition professionals, it focuses on the relationships between principals and external agents as they engage in property transactions. The research investigated the extent to which the presence of outcome‐based remuneration structures could lead to biased advice, overbidding and/or poor asset selection. It is concluded that institutional property buyers are aware of incentives for opportunistic behaviour by external agents, often have sufficient expertise to robustly evaluate agents’ advice and that these incentives are counter‐balanced by a number of important controls on potential opportunistic behaviour. There are strong counter‐incentives in the need for the agents to establish personal relationships and trust between themselves and institutional buyers, to generate repeat and related business and to preserve or generate a good reputation in the market.