69 resultados para Basal sporophylls number
Resumo:
The variability of hourly values of solar wind number density, number density variation, speed, speed variation and dynamic pressure with IMF Bz and magnitude |B| has been examined for the period 1965–1986. We wish to draw attention to a strong correlation in number density and number density fluctuation with IMF Bz characterised by a symmetric increasing trend in these quantities away from Bz = 0 nT. The fluctuation level in solar wind speed is found to be relatively independent of Bz. We infer that number density and number density variability dominate in controlling solar wind dynamic pressure and dynamic pressure variability. It is also found that dynamic pressure is correlated with each component of IMF and that there is evidence of morphological differences between the variation with each component. Finally, we examine the variation of number density, speed, dynamic pressure and fluctuation level in number density and speed with IMF magnitude |B|. Again we find that number density variation dominates over solar wind speed in controlling dynamic pressure.
Resumo:
Results of extensive site reconnaissance on the Isles of Tiree, Coll and north-west Mull, Inner Hebrides are presented. Pollen-stratigraphic records were compiled from a profile from Glen Aros, north-west Mull and from two profiles on Coll located at Loch an t-Sagairt and Caolas an Eilean. Quantification of microscopic charcoal provided records that were used to facilitate a preliminary evaluation of the causal driving mechanisms of vegetation change. Bayesian modelling of radiocarbon dates was used to construct preliminary chronological frameworks for these records. Basal sedimentary deposits at Glen Aros contain pollen records that correspond with vegetation succession typical of the early Holocene dating to c. 11,370 cal BP. Woodland development is a key feature of the pollen records dating to the early Holocene, while records from Loch an t-Sagairt show that blanket mire communities were widespread in north-west Coll by c. 9800 cal BP. The Corylus-rise is dated to c. 10,710 cal BP at Glen Aros and c. 9905 cal BP at Loch an t-Sagairt, with records indicating extensive cover of hazel woodland with birch. All of the major arboreal taxa were recorded, though Quercus and Ulmus were nowhere widespread. Analysis of wood charcoal remains from a Mesolithic site at Fiskary Bay, Coll indicate that Salix and Populus are likely to be under-represented in the pollen records. Reconstructed isopoll maps appear to underplay the importance of alder in western Scotland during the mid-Holocene. Alder-rise expansions in microscopic charcoal dating to c. 7300 cal BP at Glen Aros and c. 6510 to 5830 cal BP on Coll provide records of significance to the issue of human-induced burning related to the expansion of alder in Britain. Increasing frequencies in microscopic charcoal are correlated with mid-Holocene records of increasing aridity in western Scotland after c. 7490 cal BP at Glen Aros, 6760 cal BP at Loch an t-Sagairt and 6590 cal BP at Caolas an Eilean, while several phases of increasing bog surface wetness were detected in the Loch an t-Sagairt archive during the Holocene. At least five phases of small-scale woodland disturbance during the Mesolithic period were identified in the Glen Aros profile dating to c. 11,650 cal BP, 9300 cal BP, 7840 cal BP, 7040 cal BP and 6100 cal BP. The timing of the third phase is coincident with evidence of Mesolithic settlement at Creit Dhu, north-west Mull. Three phases of small-scale woodland disturbance were detected at Loch an t-Sagairt dating to c. 9270 cal BP, 8770 cal BP and 8270 cal BP, all of which overlap chronologically with evidence of Mesolithic activity at Fiskary Bay, Coll. A number of these episodes are aligned chronologically with phases of Holocene climate variability such as the 8.2 K event.
Resumo:
Model intercomparisons have identified important deficits in the representation of the stable boundary layer by turbulence parametrizations used in current weather and climate models. However, detrimental impacts of more realistic schemes on the large-scale flow have hindered progress in this area. Here we implement a total turbulent energy scheme into the climate model ECHAM6. The total turbulent energy scheme considers the effects of Earth’s rotation and static stability on the turbulence length scale. In contrast to the previously used turbulence scheme, the TTE scheme also implicitly represents entrainment flux in a dry convective boundary layer. Reducing the previously exaggerated surface drag in stable boundary layers indeed causes an increase in southern hemispheric zonal winds and large-scale pressure gradients beyond observed values. These biases can be largely removed by increasing the parametrized orographic drag. Reducing the neutral limit turbulent Prandtl number warms and moistens low-latitude boundary layers and acts to reduce longstanding radiation biases in the stratocumulus regions, the Southern Ocean and the equatorial cold tongue that are common to many climate models.
Resumo:
This paper reports on exploratory work investigating how children with severe and profound learning difficulties register an awareness of small quantities and how they might use this information to inform their understanding. It draws on studies of typically developing children and investigates their application to pupils whose response to conventional mathematical tasks are often limited because they lack relevance and interest. The responses of the three pupils to individualized learning contexts mirror the progression suggested in the literature, namely from awareness of number to simple actions using number cues to problem-solving behaviour
Resumo:
We use sunspot group observations from the Royal Greenwich Observatory (RGO) to investigate the effects of intercalibrating data from observers with different visual acuities. The tests are made by counting the number of groups RB above a variable cut-off threshold of observed total whole-spot area (uncorrected for foreshortening) to simulate what a lower acuity observer would have seen. The synthesised annual means of RB are then re-scaled to the full observed RGO group number RA using a variety of regression techniques. It is found that a very high correlation between RA and RB (rAB > 0.98) does not prevent large errors in the intercalibration (for example sunspot maximum values can be over 30 % too large even for such levels of rAB). In generating the backbone sunspot number (RBB), Svalgaard and Schatten (2015, this issue) force regression fits to pass through the scatter plot origin which generates unreliable fits (the residuals do not form a normal distribution) and causes sunspot cycle amplitudes to be exaggerated in the intercalibrated data. It is demonstrated that the use of Quantile-Quantile (“Q Q”) plots to test for a normal distribution is a useful indicator of erroneous and misleading regression fits. Ordinary least squares linear fits, not forced to pass through the origin, are sometimes reliable (although the optimum method used is shown to be different when matching peak and average sunspot group numbers). However, other fits are only reliable if non-linear regression is used. From these results it is entirely possible that the inflation of solar cycle amplitudes in the backbone group sunspot number as one goes back in time, relative to related solar-terrestrial parameters, is entirely caused by the use of inappropriate and non-robust regression techniques to calibrate the sunspot data.
Resumo:
The number of bidders, N, involved in a construction procurement auction is known to have an important effect on the value of the lowest bid and the mark-up applied by bidders. In practice, for example, it is important for a bidder to have a good estimate of N when bidding for a current contract. One approach, instigated by Friedman in 1956, is to make such an estimate by statistical analysis and modelling. Since then, however, finding a suitable model for N has been an enduring problem for researchers and, despite intensive research activity in the subsequent 30 years, little progress has been made, due principally to the absence of new ideas and perspectives. The debate is resumed by checking old assumptions, providing new evidence relating to concomitant variables and proposing a new model. In doing this and in order to ensure universality, a novel approach is developed and tested by using a unique set of 12 construction tender databases from four continents. This shows the new model provides a significant advancement on previous versions. Several new research questions are also posed and other approaches identified for future study.
Resumo:
Extreme weather events such as heat waves are becoming more frequent and intense. Populations can cope with elevated heat stress by evolving higher basal heat tolerance (evolutionary response) and/or stronger induced heat tolerance (plastic response). However, there is ongoing debate about whether basal and induced heat tolerance are negatively correlated and whether adaptive potential in heat tolerance is sufficient under ongoing climate warming. To evaluate the evolutionary potential of basal and induced heat tolerance, we performed experimental evolution on a temperate source 4 population of the dung fly Sepsis punctum. Offspring of flies adapted to three thermal selection regimes (Hot, Cold and Reference) were subjected to acute heat stress after having been exposed to either a hot-acclimation or non-acclimation pretreatment. As different traits may respond differently to temperature stress, several physiological and life history traits were assessed. Condition dependence of the response was evaluated by exposing juveniles to different levels of developmental (food restriction/rearing density) stress. Heat knockdown times were highest, whereas acclimation effects were lowest in the Hot selection regime, indicating a negative association between basal and induced heat tolerance. However, survival, adult longevity, fecundity and fertility did not show such a pattern. Acclimation had positive effects in heat-shocked flies, but in the absence of heat stress hot-acclimated flies had reduced life spans relative to nonacclimated ones, thereby revealing a potential cost of acclimation. Moreover, body size positively affected heat tolerance and unstressed individuals were less prone to heat stress than stressed flies, offering support for energetic costs associated with heat tolerance. Overall, our results indicate that heat tolerance of temperate insects can evolve under rising temperatures, but this response could be limited by a negative relationship between basal and induced thermotolerance, and may involve some but not other fitness-related traits.
Resumo:
More than 70 years ago it was recognised that ionospheric F2-layer critical frequencies [foF2] had a strong relationship to sunspot number. Using historic datasets from the Slough and Washington ionosondes, we evaluate the best statistical fits of foF2 to sunspot numbers (at each Universal Time [UT] separately) in order to search for drifts and abrupt changes in the fit residuals over Solar Cycles 17-21. This test is carried out for the original composite of the Wolf/Zürich/International sunspot number [R], the new “backbone” group sunspot number [RBB] and the proposed “corrected sunspot number” [RC]. Polynomial fits are made both with and without allowance for the white-light facular area, which has been reported as being associated with cycle-to-cycle changes in the sunspot number - foF2 relationship. Over the interval studied here, R, RBB, and RC largely differ in their allowance for the “Waldmeier discontinuity” around 1945 (the correction factor for which for R, RBB and RC is, respectively, zero, effectively over 20 %, and explicitly 11.6 %). It is shown that for Solar Cycles 18-21, all three sunspot data sequences perform well, but that the fit residuals are lowest and most uniform for RBB. We here use foF2 for those UTs for which R, RBB, and RC all give correlations exceeding 0.99 for intervals both before and after the Waldmeier discontinuity. The error introduced by the Waldmeier discontinuity causes R to underestimate the fitted values based on the foF2 data for 1932-1945 but RBB overestimates them by almost the same factor, implying that the correction for the Waldmeier discontinuity inherent in RBB is too large by a factor of two. Fit residuals are smallest and most uniform for RC and the ionospheric data support the optimum discontinuity multiplicative correction factor derived from the independent Royal Greenwich Observatory (RGO) sunspot group data for the same interval.