64 resultados para BP128 12th .E7
Resumo:
This paper addresses the challenging domain of vehicle classification from pole-mounted roadway cameras, specifically from side-profile views. A new public vehicle dataset is made available consisting of over 10000 side profile images (86 make/model and 9 sub-type classes). 5 state-of-the-art classifiers are applied to the dataset, with the best achieving high classification rates of 98.7% for sub-type and 99.7- 99.9% for make and model recognition, confirming the assertion made that single vehicle side profile images can be used for robust classification.
Resumo:
In this paper we present a novel approach to detect people meeting. The proposed approach works by translating people behaviour from trajectory information into semantic terms. Having available a semantic model of the meeting behaviour, the event detection is performed in the semantic domain. The model is learnt employing a soft-computing clustering algorithm that combines trajectory information and motion semantic terms. A stable representation can be obtained from a series of examples. Results obtained on a series of videos with different types of meeting situations show that the proposed approach can learn a generic model that can effectively be applied on the behaviour recognition of meeting situations.
Resumo:
While a multitude of motion segmentation algorithms have been presented in the literature, there has not been an objective assessment of different approaches to fusing their outputs. This paper investigates the application of 4 different fusion schemes to the outputs of 3 probabilistic pixel-level segmentation algorithms. We performed an extensive experimentation using 6 challenge categories from the changedetection.net dataset demonstrating that in general simple majority vote proves to be more effective than more complex fusion schemes.
Resumo:
Housing Associations (HAs) contribute circa 20% of the UK’s housing supply. HAs are however under increasing pressure as a result of funding cuts and rent reductions. Due to the increased pressure, a number of processes are currently being reviewed by HAs, especially how they manage and learn from defects. Learning from defects is considered a useful approach to achieving defect reduction within the UK housebuilding industry. This paper contributes to our understanding of how HAs learn from defects by undertaking an initial round table discussion with key HA stakeholders as part of an ongoing collaborative research project with the National House Building Council (NHBC) to better understand how house builders and HAs learn from defects to reduce their prevalence. The initial discussion shows that defect information runs through a number of groups, both internal and external of a HA during both the defects management process and organizational learning (OL) process. Furthermore, HAs are reliant on capturing and recording defect data as the foundation for the OL process. During the OL process defect data analysis is the primary enabler to recognizing a need for a change to organizational routines. When a need for change has been recognized, new options are typically pursued to design out defects via updates to a HAs Employer’s Requirements. Proposed solutions are selected by a review board and committed to organizational routine. After implementing a change, both structured and unstructured feedback is sought to establish the change’s success. The findings from the HA discussion demonstrates that OL can achieve defect reduction within the house building sector in the UK. The paper concludes by outlining a potential ‘learning from defects model’ for the housebuilding industry as well as describing future work.