112 resultados para Arduino (Programmable controller)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A polynomial-based ARMA model, when posed in a state-space framework can be regarded in many different ways. In this paper two particular state-space forms of the ARMA model are considered, and although both are canonical in structure they differ in respect of the mode in which disturbances are fed into the state and output equations. For both forms a solution is found to the optimal discrete-time observer problem and algebraic connections between the two optimal observers are shown. The purpose of the paper is to highlight the fact that the optimal observer obtained from the first state-space form, commonly known as the innovations form, is not that employed in an optimal controller, in the minimum-output variance sense, whereas the optimal observer obtained from the second form is. Hence the second form is a much more appropriate state-space description to use for controller design, particularly when employed in self-tuning control schemes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper considers the use of a discrete-time deadbeat control action on systems affected by noise. Variations on the standard controller form are discussed and comparisons are made with controllers in which noise rejection is a higher priority objective. Both load and random disturbances are considered in the system description, although the aim of the deadbeat design remains as a tailoring of reference input variations. Finally, the use of such a deadbeat action within a self-tuning control framework is shown to satisfy, under certain conditions, the self-tuning property, generally though only when an extended form of least-squares estimation is incorporated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A neural network enhanced proportional, integral and derivative (PID) controller is presented that combines the attributes of neural network learning with a generalized minimum-variance self-tuning control (STC) strategy. The neuro PID controller is structured with plant model identification and PID parameter tuning. The plants to be controlled are approximated by an equivalent model composed of a simple linear submodel to approximate plant dynamics around operating points, plus an error agent to accommodate the errors induced by linear submodel inaccuracy due to non-linearities and other complexities. A generalized recursive least-squares algorithm is used to identify the linear submodel, and a layered neural network is used to detect the error agent in which the weights are updated on the basis of the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model, and therefore the error agent is naturally functioned within the control law. In this way the controller can deal not only with a wide range of linear dynamic plants but also with those complex plants characterized by severe non-linearity, uncertainties and non-minimum phase behaviours. Two simulation studies are provided to demonstrate the effectiveness of the controller design procedure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A dynamic recurrent neural network (DRNN) that can be viewed as a generalisation of the Hopfield neural network is proposed to identify and control a class of control affine systems. In this approach, the identified network is used in the context of the differential geometric control to synthesise a state feedback that cancels the nonlinear terms of the plant yielding a linear plant which can then be controlled using a standard PID controller.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper discusses the use of multi-layer perceptron networks for linear or linearizable, adaptive feedback.control schemes in a discrete-time environment. A close look is taken at the model structure selected and the extent of the resulting parametrization. A comparison is made with standard, non-perceptron algorithms, e.g. self-tuning control, and it is shown how gross over-parametrization can occur in the neural network case. Because of the resultant heavy computational burden and poor controller convergence, a strong case is made against the use of neural networks for discrete-time linear control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper introduces a new fast, effective and practical model structure construction algorithm for a mixture of experts network system utilising only process data. The algorithm is based on a novel forward constrained regression procedure. Given a full set of the experts as potential model bases, the structure construction algorithm, formed on the forward constrained regression procedure, selects the most significant model base one by one so as to minimise the overall system approximation error at each iteration, while the gate parameters in the mixture of experts network system are accordingly adjusted so as to satisfy the convex constraints required in the derivation of the forward constrained regression procedure. The procedure continues until a proper system model is constructed that utilises some or all of the experts. A pruning algorithm of the consequent mixture of experts network system is also derived to generate an overall parsimonious construction algorithm. Numerical examples are provided to demonstrate the effectiveness of the new algorithms. The mixture of experts network framework can be applied to a wide variety of applications ranging from multiple model controller synthesis to multi-sensor data fusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a controller design scheme for a priori unknown non-linear dynamical processes that are identified via an operating point neurofuzzy system from process data. Based on a neurofuzzy design and model construction algorithm (NeuDec) for a non-linear dynamical process, a neurofuzzy state-space model of controllable form is initially constructed. The control scheme based on closed-loop pole assignment is then utilized to ensure the time invariance and linearization of the state equations so that the system stability can be guaranteed under some mild assumptions, even in the presence of modelling error. The proposed approach requires a known state vector for the application of pole assignment state feedback. For this purpose, a generalized Kalman filtering algorithm with coloured noise is developed on the basis of the neurofuzzy state-space model to obtain an optimal state vector estimation. The derived controller is applied in typical output tracking problems by minimizing the tracking error. Simulation examples are included to demonstrate the operation and effectiveness of the new approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the evaluation in power consumption of a clocking technique for pipelined designs. The technique shows a dynamic power consumption saving of around 30% over a conventional global clocking mechanism. The results were obtained from a series of experiments of a systolic circuit implemented in Virtex-II devices. The conversion from a global-clocked pipelined design to the proposed technique is straightforward, preserving the original datapath design. The savings can be used immediately either as a power reduction benefit or to increase the frequency of operation of a design for the same power consumption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a semi-synchronous pipeline scheme, here referred as single-pulse pipeline, to the problem of mapping pipelined circuits to a Field Programmable Gate Array (FPGA). Area and timing considerations are given for a general case and later applied to a systolic circuit as illustration. The single-pulse pipeline can manage asynchronous worst-case data completion and it is evaluated against two chosen asynchronous pipelining: a four-phase bundle-data pipeline and a doubly-latched asynchronous pipeline. The semi-synchronous pipeline proposal takes less FPGA area and operates faster than the two selected fully-asynchronous schemes for an FPGA case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reconfigurable computing is becoming an important new alternative for implementing computations. Field programmable gate arrays (FPGAs) are the ideal integrated circuit technology to experiment with the potential benefits of using different strategies of circuit specialization by reconfiguration. The final form of the reconfiguration strategy is often non-trivial to determine. Consequently, in this paper, we examine strategies for reconfiguration and, based on our experience, propose general guidelines for the tradeoffs using an area-time metric called functional density. Three experiments are set up to explore different reconfiguration strategies for FPGAs applied to a systolic implementation of a scalar quantizer used as a case study. Quantitative results for each experiment are given. The regular nature of the example means that the results can be generalized to a wide class of industry-relevant problems based on arrays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a review of the design and development of the Yorick series of active stereo camera platforms and their integration into real-time closed loop active vision systems, whose applications span surveillance, navigation of autonomously guided vehicles (AGVs), and inspection tasks for teleoperation, including immersive visual telepresence. The mechatronic approach adopted for the design of the first system, including head/eye platform, local controller, vision engine, gaze controller and system integration, proved to be very successful. The design team comprised researchers with experience in parallel computing, robot control, mechanical design and machine vision. The success of the project has generated sufficient interest to sanction a number of revisions of the original head design, including the design of a lightweight compact head for use on a robot arm, and the further development of a robot head to look specifically at increasing visual resolution for visual telepresence. The controller and vision processing engines have also been upgraded, to include the control of robot heads on mobile platforms and control of vergence through tracking of an operator's eye movement. This paper details the hardware development of the different active vision/telepresence systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the design, implementation and testing of a high speed controlled stereo “head/eye” platform which facilitates the rapid redirection of gaze in response to visual input. It details the mechanical device, which is based around geared DC motors, and describes hardware aspects of the controller and vision system, which are implemented on a reconfigurable network of general purpose parallel processors. The servo-controller is described in detail and higher level gaze and vision constructs outlined. The paper gives performance figures gained both from mechanical tests on the platform alone, and from closed loop tests on the entire system using visual feedback from a feature detector.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates the robustness of a hybrid analog/digital feedback active noise cancellation (ANC) headset system. The digital ANC systems with the filtered-x least-mean-square (FXLMS) algorithm require accurate estimation of the secondary path for the stability and convergence of the algorithm. This demands a great challenge for the ANC headset design because the secondary path may fluctuate dramatically such as when the user adjusts the position of the ear-cup. In this paper, we analytically show that adding an analog feedback loop into the digital ANC systems can effectively reduce the plant fluctuation, thus achieving a more robust system. The method for designing the analog controller is highlighted. A practical hybrid analog/digital feedback ANC headset has been built and used to conduct experiments, and the experimental results show that the hybrid headset system is more robust under large plant fluctuation, and has achieved satisfactory noise cancellation for both narrowband and broadband noises.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper analyzes the performance of the unconstrained filtered-x LMS (FxLMS) algorithm for active noise control (ANC), where we remove the constraints on the controller that it must be causal and has finite impulse response. It is shown that the unconstrained FxLMS algorithm always converges to, if stable, the true optimum filter, even if the estimation of the secondary path is not perfect, and its final mean square error is independent of the secondary path. Moreover, we show that the sufficient and necessary stability condition for the feedforward unconstrained FxLMS is that the maximum phase error of the secondary path estimation must be within 90°, which is the only necessary condition for the feedback unconstrained FxLMS. The significance of the analysis on a practical system is also discussed. Finally we show how the obtained results can guide us to design a robust feedback ANC headset.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of data reconciliation techniques can considerably reduce the inaccuracy of process data due to measurement errors. This in turn results in improved control system performance and process knowledge. Dynamic data reconciliation techniques are applied to a model-based predictive control scheme. It is shown through simulations on a chemical reactor system that the overall performance of the model-based predictive controller is enhanced considerably when data reconciliation is applied. The dynamic data reconciliation techniques used include a combined strategy for the simultaneous identification of outliers and systematic bias.