87 resultados para Alentejano pig breed meat
Resumo:
Aims: To investigate the effect of a therapeutic and sub-therapeutic chlortetracycline treatment on tetracyclineresistant Salmonella enterica serovar Typhimurium DT104 and on the commensal Escherichia coli in pig. Methods and Results: Salmonella Typhimurium DT104 was orally administered in all pigs prior to antibiotic treatment, and monitored with the native E. coli. Higher numbers of S. Typhimurium DT104 were shed from treated pigs than untreated pigs. This lasted up to 6 weeks post-treatment in the high-dose group. In this group, there was a 30% increase in E. coli with a chlortetracycline minimal inhibitory concentration (MIC) > 16 mg l(-1) and a 10% increase in E. coli with an MIC > 50 mg l(-1) during and 2 weeks post-treatment. This effect was less-pronounced in the low-dose group. PCR identified the predominant tetracycline resistance genes in the E. coli as tetA, tetB and tetC. The concentration of chlortetracycline in the pig faeces was measured by HPLC and levels reached 80 mug g(-1) faeces during treatment. Conclusion: Chlortetracycline treatment increases the proportion of resistant enteric bacteria beyond the current withdrawal time. Significance and Impact of the Study: Treated pigs are more likely to enter abattoirs with higher levels of resistant bacteria than untreated pigs promoting the risk of these moving up the food chain and infecting man.
Resumo:
Objectives: There are concerns that the use of enrofloxacin in livestock production may contribute to the development of fluoroquinolone resistance in zoonotic bacteria. The objective of our study was to investigate the effect of a single 5 day enrofloxacin treatment on Salmonella enterica serotype Typhimurium DT104 in a pig model. Results: Our results showed that a single treatment failed to eradicate S. Typhimurium DT104, which continued to be isolated up to 35 days after treatment. We also provide evidence that treatment positively selects for S. Typhimurium DT104 strains that are already nalidixic acid resistant (gyrA Asn-87) or cyclohexane resistant, the latter being indicative of an up-regulated efflux pump. Emergence of fluoroquinolone resistance was not detected during treatment or post-treatment in any of the Salmonella strains monitored. However, the effect of enrofloxacin on the nalidixic acid-resistant and cyclohexane-resistant S. Typhimurium DT104 outlasted the current withdrawal time of 10 days for Baytril (commercial veterinary formulation of enrofloxacin). Conclusions: In conclusion, our study has provided direct evidence that enrofloxacin-treated pigs could be entering abattoirs with higher numbers of quinolone-resistant zoonotic bacteria than untreated pigs, increasing the risk of these entering the food chain.
Resumo:
Aim: To assess the effect of the growth promoter avilamycin on emergence and persistence of resistance in enteric bacteria in the pig. Methods and Results: Pigs ( treated with avilamycin for 3 months and controls) were challenged with multiresistant Salmonella Typhimurium DT104 and faecal counts were performed for enterococci, Escherichia coli, S. Typhimurium and Campylobacter ( before, during and 5 weeks post-treatment). Representative isolates were tested for antibiotic resistance and for the presence of resistance genes. Avilamycin-resistant Enterococci faecalis (speciated by PCR) were isolated from the treated pigs and continued to be detected for the first week after treatment had ceased. The avilamycin- resistance gene was characterized by PCR as the emtA gene and speciation by PCR. MIC profiling confirmed that more than one strain of Ent. faecalis carried this gene. There was no evidence of increased antimicrobial resistance in the E. coli, Salmonella and Campylobacter populations, although there was a higher incidence of tetB positive E. coli in the treated pigs than the controls. Conclusion: Although avilamycin selects for resistance in the native enterococci population of the pig, no resistant isolates were detected beyond 1 week post-treatment. This suggests that resistant isolates were unable to persist once selective pressure was removed and were out-competed by the sensitive microflora. Significance and Impact of the Study: Our data suggest the risk of resistant isolates becoming carcass contaminants and infecting humans could be minimized by introducing a withdrawal period after using avilamycin and prior to slaughter.
Resumo:
The primary objective was to determine fatty acid composition of skinless chicken breast and leg meat portions and chicken burgers and nuggets from the economy price range, standard price range (both conventional intensive rearing) and the organic range from four leading supermarkets. Few significant differences in the SFA, MUFA and PUFA composition of breast and leg meat portions were found among price ranges, and supermarket had no effect. No significant differences in fatty acid concentrations of economy and standard chicken burgers were found, whereas economy chicken nuggets had higher C16:1, C18:1 cis, C18:1 trans and C18:3 n-3 concentrations than had standard ones. Overall, processed chicken products had much higher fat contents and SFA than had whole meat. Long chain n-3 fatty acids had considerably lower concentrations in processed products than in whole meat. Overall there was no evidence that organic chicken breast or leg meat had a more favourable fatty acid composition than had meat from conventionally reared birds.
Resumo:
Mast cells that are in close proximity to autonomic and enteric nerves release several mediators that cause neuronal hyperexcitability. This study examined whether mast cell tryptase evokes acute and long-term hyperexcitability in submucosal neurons from the guinea-pig ileum by activating proteinase-activated receptor 2 (PAR2) on these neurons. We detected the expression of PAR2 in the submucosal plexus using RT-PCR. Most submucosal neurons displayed PAR2 immunoreactivity, including those colocalizing VIP. Brief (minutes) application of selective PAR2 agonists, including trypsin, the activating peptide SL-NH2 and mast cell tryptase, evoked depolarizations of the submucosal neurons, as measured with intracellular recording techniques. The membrane potential returned to resting values following washout of agonists, but most neurons were hyperexcitable for the duration of recordings (> 30 min-hours) and exhibited an increased input resistance and amplitude of fast EPSPs. Trypsin, in the presence of soybean trypsin inhibitor, and the reverse sequence of the activating peptide (LR-NH2) had no effect on neuronal membrane potential or long-term excitability. Degranulation of mast cells in the presence of antagonists of established excitatory mast cell mediators (histamine, 5-HT, prostaglandins) also caused depolarization, and following washout of antigen, long-term excitation was observed. Mast cell degranulation resulted in the release of proteases, which desensitized neurons to other agonists of PAR2. Our results suggest that proteases from degranulated mast cells cleave PAR2 on submucosal neurons to cause acute and long-term hyperexcitability. This signalling pathway between immune cells and neurons is a previously unrecognized mechanism that could contribute to chronic alterations in visceral function.
Resumo:
A theory of the allocation of producer levies earmarked for downstream promotion is developed and applied to quarterly series (1970:2–1988:4) on red-meats advertising by the Australian Meat and Live-stock Corporation. Robust inferences about program efficiency are contained in the coefficients of changes in promotion effort regressed against movements in farm price and quantity. Empirical evidence of program efficiency is inconclusive. While the deeper issue of efficient disbursement of funds remains an open question, there is evidence, at least, of efficient taxation.
Resumo:
The UK Department for Environment, Food and Rural Affairs (Defra) identified practices to reduce the risk of animal disease outbreaks. We report on the response of sheep and pig farmers in England to promotion of these practices. A conceptual framework was established from research on factors influencing adoption of animal health practices, linking knowledge, attitudes, social influences and perceived constraints to the implementation of specific practices. Qualitative data were collected from nine sheep and six pig enterprises in 2011. Thematic analysis explored attitudes and responses to the proposed practices, and factors influencing the likelihood of implementation. Most feel they are doing all they can reasonably do to minimise disease risk and that practices not being implemented are either not relevant or ineffective. There is little awareness and concern about risk from unseen threats. Pig farmers place more emphasis than sheep farmers on controlling wildlife, staff and visitor management and staff training. The main factors that influence livestock farmers’ decision on whether or not to implement a specific disease risk measure are: attitudes to, and perceptions of, disease risk; attitudes towards the specific measure and its efficacy; characteristics of the enterprise which they perceive as making a measure impractical; previous experience of a disease or of the measure; and the credibility of information and advice. Great importance is placed on access to authoritative information with most seeing vets as the prime source to interpret generic advice from national bodies in the local context. Uptake of disease risk measures could be increased by: improved risk communication through the farming press and vets to encourage farmers to recognise hidden threats; dissemination of credible early warning information to sharpen farmers’ assessment of risk; and targeted information through training events, farming press, vets and other advisers, and farmer groups, tailored to the different categories of livestock farmer.
Resumo:
Red and processed meat consumption is associated with the risk of colorectal cancer. Three hypotheses are proposed to explain this association, via heme-induced oxidation of fat, heterocyclic amines, or N-nitroso compounds. Rats have often been used to study these hypotheses, but the lack of enterosalivary cycle of nitrate in rats casts doubt on the relevance of this animal model to predict nitroso- and heme-associated human colon carcinogenesis. The present study was thus designed to clarify whether a nitrite intake that mimics the enterosalivary cycle can modulate hemeinduced nitrosation and fat peroxidation. This study shows that, in contrast with the starting hypothesis, drinking water added with nitrite to mimic the salivary nitrite content did not change the effect of hemoglobin on biochemicalmarkers linked to colon carcinogenesis, notably lipid peroxidation and cytotoxic activity in the colon of rat. However, ingested sodium nitrite increased fecal nitrosocompounds level, but their fecal concentration and their nature (iron-nitrosyl) would probably not be associated with an increased risk of cancer.We thus suggest that the rat model could be relevant for study the effect of red meat on colon carcinogenesis, in spite of the lack of nitrite in the saliva of rats.
Resumo:
Aqueous extracts of dried shiitake mushrooms (Lentinus edodes) were prepared as taste and flavour enhancers for meat formulations. Effects of time and temperature on the chemical and sensory properties of the extracts were examined. Extracts prepared at 70 °C had significantly higher concentrations (p<0.001) of the savoury tasting 5’-ribonucleotides than those prepared at 22 °C but increasing the extraction time from 30 to 360 mins only increased their recovery slightly (p=0.053). In contrast, higher temperature extracts had considerably smaller concentrations of the major volatile compounds, such as lenthionine, 1-octen-3-ol, 1,3-dithiethane and dimethyl disulfide, because of loss through volatilisation. A sensory discrimination test showed that the lower temperature extract was perceived to have less umami taste than the higher temperature extract (p=0.048). Incorporating the 70 °C shiitake extract into minced meat formulations led to significantly higher levels of savoury tasting 5’-ribonucleotides in the cooked meat but no significant difference in umami perception.
Resumo:
BACKGROUND: Umami taste in foods is elicited predominantly by the presence of glutamic acid and 5’-ribonucleotides, which act synergistically. This study aimed to use natural ingredients to maximise umami taste of a meat formulation and determine effects on liking of older consumers. METHODS: Cooked meat products with added natural ingredients (yeast extract, mycoscent, shiitake extract, tomato puree, soy sauce and soy bean paste) or monosodium glutamate (MSG) were prepared and compared to a control sample analytically (umami compounds), sensorially (sensory profile) and hedonically (liking by younger and older volunteers). Taste detection thresholds of sodium chloride and MSG of volunteers were collected. RESULTS: Four of the seven cooked meat products developed had a significantly higher content of umami-contributing compounds compared to the control. All products, except those containing MSG or tomato puree, were scored (by trained sensory panel) perceptually significantly higher in umami and / or salty taste compared to the control. Consumer tests showed a correlation of liking by the older cohort with perceived saltiness (ρ=0.76). CONCLUSION: The addition of natural umami-containing ingredients during the cooking of meat can provide enhanced umami and salty taste characteristics, this can lead to increased liking by some consumers, particularly those with raised taste detection thresholds.
Resumo:
Background: The process of weaning causes a major shift in intestinal microbiota and is a critical period for developing appropriate immune responses in young mammals. Objective: To use a new systems approach to provide an overview of host metabolism and the developing immune system in response to nutritional intervention around the weaning period. Design: Piglets (n¼14) were weaned onto either an eggbased or soya-based diet at 3 weeks until 7 weeks, when all piglets were switched onto a fish-based diet. Half the animals on each weaning diet received Bifidobacterium lactis NCC2818 supplementation from weaning onwards. Immunoglobulin production from immunologically relevant intestinal sites was quantified and the urinary 1H NMR metabolic profile was obtained from each animal at post mortem (11 weeks). Results: Different weaning diets induced divergent and sustained shifts in the metabolic phenotype, which resulted in the alteration of urinary gut microbial co-metabolites, even after 4 weeks of dietary standardisation. B lactis NCC2818 supplementation affected the systemic metabolism of the different weaning diet groups over and above the effects of diet. Additionally, production of gut mucosa-associated IgA and IgM was found to depend upon the weaning diet and on B lactis NCC2818 supplementation. Conclusion: The correlation of urinary 1H NMR metabolic profile with mucosal immunoglobulin production was demonstrated, thus confirming the value of this multiplatform approach in uncovering non-invasive biomarkers of immunity. This has clear potential for translation into human healthcare with the development of urine testing as a means of assessing mucosal immune status. This might lead to early diagnosis of intestinal dysbiosis and with subsequent intervention, arrest disease development. This system enhances our overall understanding of pathologies under supra-organismal control.
Resumo:
Studying the pathogenesis of an infectious disease like colibacillosis requires an understanding of the responses of target hosts to the organism both as a pathogen and as a commensal. The mucosal immune system constitutes the primary line of defence against luminal micro-organisms. The immunoglobulin-superfamily-based adaptive immune system evolved in the earliest jawed vertebrates, and the adaptive and innate immune system of humans, mice, pigs and ruminants co-evolved in common ancestors for approximately 300 million years. The divergence occurred only 100 mya and, as a consequence, most of the fundamental immunological mechanisms are very similar. However, since pressure on the immune system comes from rapidly evolving pathogens, immune systems must also evolve rapidly to maintain the ability of the host to survive and reproduce. As a consequence, there are a number of areas of detail where mammalian immune systems have diverged markedly from each other, such that results obtained in one species are not always immediately transferable to another. Thus, animal models of specific diseases need to be selected carefully, and the results interpreted with caution. Selection is made simpler where specific host species like cattle and pigs can be both target species and reservoirs for human disease, as in infections with Escherichia coli.