166 resultados para Agricultural Irrigation.
Resumo:
Based on comparisons with the UK and a survey of University level Croatian agricultural students, a model was developed to explore the influence of various factors on successful completion of courses. From a knowledge of significant factors, tutors could predict the probability that new students would be successful and so guide them accordingly. In Croatia, where oral examination methods predominate, many students avoid taking these examinations for several months. It is suggested that three key elements for improving the quality of agricultural studies in Croatia are (i) improving the confidence of the students in conjunction with (ii) a more rigorous, compulsory examination procedure and (iii) a supportive tutorial system.
Resumo:
This article is a commentary on several research studies conducted on the prospects for aerobic rice production systems that aim at reducing the demand for irrigation water which in certain major rice producing areas of the world is becoming increasingly scarce. The research studies considered, as reported in published articles mainly under the aegis of the International Rice Research Institute (IRRI), have a narrow scope in that they test only 3 or 4 rice varieties under different soil moisture treatments obtained with controlled irrigation, but with other agronomic factors of production held as constant. Consequently, these studies do not permit an assessment of the interactions among agronomic factors that will be of critical significance to the performance of any production system. Varying the production factor of "water" will seriously affect also the levels of the other factors required to optimise the performance of a production system. The major weakness in the studies analysed in this article originates from not taking account of the interactions between experimental and non-experimental factors involved in the comparisons between different production systems. This applies to the experimental field design used for the research studies as well as to the subsequent statistical analyses of the results. The existence of such interactions is a serious complicating element that makes meaningful comparisons between different crop production systems difficult. Consequently, the data and conclusions drawn from such research readily become biased towards proposing standardised solutions for possible introduction to farmers through a linear technology transfer process. Yet, the variability and diversity encountered in the real-world farming environment demand more flexible solutions and approaches in the dissemination of knowledge-intensive production practices through "experiential learning" types of processes, such as those employed by farmer field schools. This article illustrates, based on expertise of the 'system of rice intensification' (SRI), that several cost-effective and environment-friendly agronomic solutions to reduce the demand for irrigation water, other than the asserted need for the introduction of new cultivars, are feasible. Further, these agronomic Solutions can offer immediate benefits of reduced water requirements and increased net returns that Would be readily accessible to a wide range of rice producers, particularly the resource poor smallholders. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Progress in the Doha Round is assessed against the changes to the common agricultural policy (CAP) brought about by the Fischler reforms of 2003-2004, and that proposed for sugar. An elimination of export subsidies could place EU exports of processed foods at a competitive disadvantage because of high sugar and milk prices. Provided the single payment scheme falls within the green box, the likely new limits on domestic support should not be problematic for the post-Fischler CAP. However, an ambitious market access package could open up EU markets and bring pressure for further reform. If there is no Doha agreement, existing provisions will continue to apply, but without the protection of the Peace Clause; and increased litigation is likely. Further CAP reform is to be expected.
Resumo:
Regulated irrigation has the potential to improve crop quality in woody ornamentals by reducing excessive vigour and promoting a more compact habit. This research aimed to compare the effectiveness and the mode of action of two techniques, regulated deficit irrigation (RDI) and partial root drying (PRD), when applied to container-grown ornamentals through drip irrigation. Results showed that RDI and PRD reduced growth in Cotinus coggygria 'Royal Purple', but in Forsythia x intermedia 'Lynwood', significant reductions were recorded only with RDI. Physiological measurements in Forsythia indicated that reductions in stomatal conductance (g(s)) occurred in both treatments, but those in the RDI tended to be more persistent. Reduced g(s) in PRD was consistent with the concept that chemical signals from the root can regulate stomatal aperture alone; however, the data also suggested that optimising the growth reduction required a moderate degree of shoot water deficit (i.e. a hydraulic signal to be imposed). As RDI was associated with tissue water deficit, it was used in a second experiment to determine the potential of this technique to precondition container-grown plants against subsequent drought stress (e.g. during retail stages or after planting out). Speed of acclimation would be important in a commercial context, and the results demonstrated that both slow and rapid imposition of RDI enabled Forsythia plants to acclimate against later drought events. This article discusses the potential to both improve ornamental plant quality and enhance tolerance to subsequent adverse conditions through controlled, regulated irrigation.
Resumo:
Improving plant quality and the uniformity of a crop are major objectives for growers of ornamental nursery stock. The potential to control excess vigour and to improve quality through regulated deficit irrigation (RDI) was investigated using a range of woody ornamental species. RDI regimes reduced vegetative growth consistently across different species and growing seasons. Plants adapted to reduced water supplies primarily via stomatal control, but also by osmotic adjustment when grown under the most severe RDI regimes. Only plants exposed to <= 25% of potential evapo-transpiration demonstrated any evidence of leaf injury, and the extent was slight. Growth inhibition increased as the severity of RDI increased. Improvements in quality were attained through a combination of shorter internodes and final shoot lengths, yet the number of 'formative' primary shoots remained unaffected. Compact, well-branched plants could be formed without a requirement for mid-season pruning. In addition to severity, the timing of RDI also influenced growth responses. Applying 50% ETp for 8 weeks during July-August resulted in the formation of good quality plants, which retained their shape until the following Spring. Re-positioning irrigation drippers within the pots of well-watered plants, in an attempt to induce a partial root drying (PRD) treatment, reduced growth, but not significantly. The adoption of irrigation scheduling, based on 50-100% ETp, has the potential to improve commercial crop quality across a range of ornamental species.
Resumo:
The aim of this research was to determine whether shoot growth could be regulated and plant quality improved through two controlled irrigation techniques: Regulated Deficit Irrigation (RDI) or Partial Root Drying (PRD). An additional benefit of such techniques is that they would also improve the efficiency of irrigation application and reduce the volume of water used on commercial nurseries. Results from two ornamental woody plant species (Cotinus and Forsythia) demonstrated that plant quality could be significantly improved when RDI was applied at ≤ 60% of potential evapo-transpiration (ETp). Stomatal closure and reduced leaf and internode growth rates were associated with both the RDI and PRD techniques, but reduced leaf water potential was only recorded in the RDI system. Changes in xylem sap pH and ABA concentrations were correlated with changes in shoot physiology, and thought to be generated by those roots exposed to drying soil. By adopting such controlled irrigation systems on commercial holdings it is estimated that water consumption could be reduced by 50 to 90%.