83 resultados para Acceleration


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study here the injection and transport of ions in the convection-dominated region of the Earth’s magnetosphere. The total ion counts from the CAMMICE MICS instrument aboard the POLAR spacecraft are used to generate occurrence probability distributions of magnetospheric ion populations. MICS ion spectra are characterised by both the peak in the differential energy flux, and the average energy of ions striking the detector. The former permits a comparison with the Stubbs et al. (2001) survey of He2+ ions of solar wind origin within the magnetosphere. The latter can address the occurrences of various classifications of precipitating particle fluxes observed in the topside ionosphere by DMSP satellites (Newell and Meng, 1992). The peak energy occurrences are consistent with our earlier work, including the dawn-dusk asymmetry with enhanced occurrences on the dawn flank at low energies, switching to the dusk flank at higher energies. The differences in the ion energies observed in these two studies can be explained by drift orbit effects and acceleration processes at the magnetopause, and in the tail current sheet. Near noon at average ion energies of _1 keV, the cusp and open LLBL occur further poleward here than in the Newell and Meng survey, probably due to convectionrelated time-of-flight effects. An important new result is that the pre-noon bias previously observed in the LLBL is most likely due to the component of this population on closed field lines, formed largely by low energy ions drifting earthward from the tail. There is no evidence here of mass and momentum transfer from the solar wind to the LLBL by nonreconnection coupling. At higher energies (_2–20 keV), we observe ions mapping to the auroral oval and can distinguish between the boundary and central plasma sheets. We show that ions at these energies relate to a transition from dawnward to duskward dominated flow, this is evidence of how ion drift orbits in the tail influence the location and behaviour of the plasma populations in the magnetosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study a brightening of the Lyman-alpha emission in the cusp which occurred in response to a short-lived southward turning of the interplanetary magnetic field (IMF) during a period of strongly enhanced solar wind plasma concentration. The cusp proton emission is detected using the SI-12 channel of the FUV imager on the IMAGE spacecraft. Analysis of the IMF observations recorded by the ACE and Wind spacecraft reveals that the assumption of a constant propagation lag from the upstream spacecraft to the Earth is not adequate for these high time-resolution studies. The variations of the southward IMF component observed by ACE and Wind allow for the calculation of the ACE-to-Earth lag as a function of time. Application of the derived propagation delays reveals that the intensity of the cusp emission varied systematically with the IMF clock angle, the relationship being particularly striking when the intensity is normalised to allow for the variation in the upstream solar wind proton concentration. The latitude of the cusp migrated equatorward while the lagged IMF pointed southward, confirming the lag calculation and indicating ongoing magnetopause reconnection. Dayside convection, as monitored by the SuperDARN network of radars, responded rapidly to the IMF changes but lagged behind the cusp proton emission response: this is shown to be as predicted by the model of flow excitation by Cowley and Lockwood (1992). We use the numerical cusp ion precipitation model of Lockwood and Davis (1996), along with modelled Lyman-_ emission efficiency and the SI-12 instrument response, to investigate the effect of the sheath field clock angle on the acceleration of ions on crossing the dayside magnetopause. This modelling reveals that the emission commences on each reconnected field line 2–2.5min after it is opened and peaks 3–5 min after it is opened. We discuss how comparison of the Lyman-alpha intensities with oxygen emissions observed simultaneously by the SI-13 channel of the FUV instrument offers an opportunity to test whether or not the clock angle dependence is consistent with the “component” or the “anti-parallel” reconnection hypothesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solar wind/magnetosheath plasma in the magnetosphere can be identified using a component that has a higher charge state, lower density and, at least soon after their entry into the magnetosphere, lower energy than plasma from a terrestrial source. We survey here observations taken over 3 years of He2+ ions made by the Magnetospheric Ion Composition Sensor (MICS) of the Charge and Mass Mgnetospheric Ion Composition Experiment (CAMMICE) instrument aboard POLAR. The occurrence probability of these solar wind ions is then plotted as a function of Magnetic Local Time (MLT) and invariant latitude (3) for various energy ranges. For all energies observed by MICS (1.8–21.4 keV) and all solar wind conditions, the occurrence probabilities peaked around the cusp region and along the dawn flank. The solar wind conditions were filtered to see if this dawnward asymmetry is controlled by the Svalgaard-Mansurov effect (and so depends on the BY component of the interplanetary magnetic field, IMF) or by Fermi acceleration of He2+ at the bow shock (and so depends on the IMF ratio BX/BY ). It is shown that the asymmetry remained persistently on the dawn flank, suggesting it was not due to effects associated with direct entry into the magnetosphere. This asymmetry, with enhanced fluxes on the dawn flank, persisted for lower energy ions (below a “cross-over” energy of about 23 keV) but reversed sense to give higher fluxes on the dusk flank at higher energies. This can be explained by the competing effects of gradient/curvature drifts and the convection electric field on ions that are convecting sunward on re-closed field lines. The lower-energy He2+ ions E × B drift dawnwards as they move earthward, whereas the higher energy ions curvature/gradient drift towards dusk. The convection electric field in the tail is weaker for northward IMF. Ions then need less energy to drift to the dusk flank, so that the cross-over energy, at which the asymmetry changes sense, is reduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two central issues in magnetospheric research are understanding the mapping of the low-altitude ionosphere to the distant regions of the magnetsphere, and understanding the relationship between the small-scale features detected in the various regions of the ionosphere and the global properties of the magnetosphere. The high-latitude ionosphere, through its magnetic connection to the outer magnetosphere, provides an important view of magnetospheric boundaries and the physical processes occurring there. All physical manifestations of this magnetic connectivity (waves, particle precipitation, etc.), however, have non-zero propagation times during which they are convected by the large-scale magnetospheric electric field, with phenomena undergoing different convection distances depending on their propagation times. Identification of the ionospheric signatures of magnetospheric regions and phenomena, therefore, can be difficult. Considerable progress has recently been made in identifying these convection signatures in data from low- and high-altitude satellites. This work has allowed us to learn much about issues such as: the rates of magnetic reconnection, both at the dayside magnetopause and in the magnetotail; particle transport across the open magnetopause; and particle acceleration at the magnetopause and the magnetotail current sheets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The implications are discussed of acceleration of magnetospheric ions by reflection off two magnetopause Alfvén waves, launched by the reconnection site into the inflow regions on both sides of the boundary. The effects of these waves on the ion populations, predicted using the model described by Lockwood et al. [1996], offer a physical interpretation of all the various widely used classifications of precipitation into the dayside ionosphere, namely, central plasma sheet, dayside boundary plasma sheet (BPS), void, low-latitude boundary layer (LLBL), cusp, mantle, and polar cap. The location of the open-closed boundary and the form of the convection flow pattern are discussed in relation to the regions in which these various precipitations are typically found. Specifically, the model predicts that both the LLBL and the dayside BPS precipitations are on newly opened field lines and places the convection reversal within the LLBL, as is often observed. It is shown that this offers solutions to a number of paradoxes and problems that arise if the LLBL and BPS precipitations are thought of as being on closed field lines. This model is also used to make quantitive predictions of the longitudinal extent and latitudinal width of the cusp, as a function of solar wind density.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyze of ion populations observed by the NOAA-12 satellite within dayside auroral transients. The data are matched with an open magnetopause model which allows for the transmission of magnetosheath ions across one or both of the two Alfvén waves which emanate from the magnetopause reconnection site. It also allows for reflection and acceleration of ions of magnetospheric origin by these waves. From the good agreement found between the model and the observations, we propose that the events and the low-latitude boundary precipitation are both on open field lines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The open magnetosphere model of cusp ion injection, acceleration and precipitation is used to predict the dispersion characteristics for fully pulsed magnetic reconnection at a low-latitude magnetopause X-line. The resulting steps, as would be seen by a satellite moving meridionally and normal to the ionospheric projection of the X-line, are compared with those seen by satellites moving longitudinally, along the open/closed boundary. It is shown that two observed cases can be explained by similar magnetosheath and reconnection characteristics, and that the major differences between them are well explained by the different satellite paths through the events. Both cases were observed in association with poleward-moving transient events seen by ground-based radar, as also predicted by the theory. The results show that the reconnection is pulsed but strongly imply it cannot also be spatially patchy, in the sense of isolated X-lines which independently are intermittently active. Furthermore they show that the reconnection pulses responsible for the poleward-moving events and the cusp ion steps, must cover at least 3 h of magnetic local time, although propagation of the active reconnection region may mean that it does not extend this far at any one instant of time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method for estimating both the Alfvén speed and the field-aligned flow of the magnetosheath at the magnetopause reconnection site is presented. The method employs low-altitude cusp ion observations and requires the identification of a feature in the cusp ion spectra near the low-energy cutoff which will often be present for a low-latitude dayside reconnection site. The appearance of these features in data of limited temporal, energy, and pitch angle resolution is illustrated by using model calculations of cusp ion distribution functions. These are based on the theory of ion acceleration at the dayside magnetopause and allow for the effects on the spectrum of flight times of ions precipitating down newly opened field lines. In addition, the variation of the reconnection rate can be evaluated, and comparison with ground-based observations of the corresponding sequence of transient events allows the field-aligned distance from the ionosphere to the reconnection site to be estimated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An explanation of overlapping cusp ion injections is presented using the pulsating cusp model of the effects of magnetopause reconnection. It is shown that two populations of cusp ions, covering separated energy ranges, can be seen simultaneously by low- or mid-altitude satellites because of the combined effect of the acceleration and the straightening of newly-opened field lines as they evolve away from the reconnection site. Observations of such signatures, recently reported in data from the Viking and Freja satellites, are discussed in terms of pulsed and steady reconnection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The contribution to the field-aligned ionospheric ion momentum equation, due to coupling between pressure anisotropy and the inhomogeneous geomagnetic field, is investigated. We term this contribution the “hydrodynamic mirror force” and investigate its dependence on the ion drift and the resulting deformations of the ion velocity distribution function from an isotropic form. It is shown that this extra upforce increases rapidly with ion drift relative to the neutral gas but is not highly dependent on the ion-neutral collision model employed. An example of a burst of flow observed by EISCAT, thought to be the ionospheric signature of a flux transfer event at the magnetopause, is studied in detail and it is shown that the nonthermal plasma which results is subject to a hydrodynamic mirror force which is roughly 10% of the gravitational downforce. In addition, predictions by the coupled University College London-Sheffield University model of the ionosphere and thermosphere show that the hydrodynamic mirror force in the auroral oval is up to 3% of the gravitational force for Kp of about 3, rising to 10% following a sudden increase in cross-cap potential. The spatial distribution of the upforce shows peaks in the cusp region and in the post-midnight auroral oval, similar to that of observed low-energy heavy ion flows from the ionosphere into the magnetosphere. We suggest the hydrodynamic mirror force may modulate these outflows by controlling the supply of heavy ions to regions of ion acceleration and that future simulations of the effects of Joule heating on ion outflows should make allowance for it.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the auroral zone, ionospheric plasma often moves horizontally at more than 1 km s−1, driven by magnetospheric electric fields, but it has usually been assumed that vertical velocities are much smaller. On occasions, however, plasma has been seen to move upwards along the magnetic field line at several hundred m s−1. These upward velocities are associated with electric fields strong enough to heat the ion population and drive it into a non-thermal state1,2. Here we report observations of substantial upwards acceleration of plasma, to velocities as high as 500 m s−1. An initial upthrust was provided by a combined upwelling of the neutral atmosphere and ionosphere but the continued acceleration at greater heights is explained by a combination of enhanced plasma pressure and the 'hydrodynamic mirror force'3. This acceleration marks an important stage in the transport of plasma from the ionosphere into the magnetosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data from the Dynamics Explorer 1 satellite and the EISCAT and Sondrestrom incoherent scatter radars, have allowed a study of low-energy ion outflows from the ionosphere into the magnetosphere during a rapid expansion of the polar cap. From the combined radar data, a 200kV increase in cross-cap potential is estimated. The upflowing ions show “X” signatures in the pitch angle-time spectrograms in the expanding midnight sector of the auroral oval. These signatures reveal low-energy (below about 60eV), light-ion beams sandwiched between two regions of ion conics and are associated with inverted-V electron precipitation. The lack of mass dispersion of the poleward edge of the event, despite great differences in the times of flight, reflects the equatorward expansion of the acceleration regions at velocities similar to those of the antisunward convection. In addition, a transient burst of upflow of 0+ is observed within the cap, possibly due to enhanced Joule heating during the event.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new dayside source of O+ ions for the polar magnetosphere is described, and a statistical survey presented of upward flows of O+ ions using 2 years of data from the retarding ion mass spectrometer (RIMS) experiment on board DE 1, at geocentric distances below 3 RE and invariant latitudes above 40°. The flows are classified according to their spin angle distributions. It is believed that the spacecraft potential near perigee is generally less than +2 V, in which case the entire O+ population at energies below about 60 eV is sampled. Examples are given of field-aligned flow and of transversely accelerated “core” O+ ions; in the latter events a large fraction of the total O+ ion population has been transversely accelerated, and in some extreme cases all the observed ions (of all ion species) have been accelerated, and no residual cold population is observed (“toroidal” distributions). However, by far the most common type of O+ upflow seen by DE RIMS lies near the dayside polar cap boundary (particularly in the prenoon sector) and displays an asymmetric spin angle distribution. In such events the ions carry an upward heat flux, and strong upflow of all species is present (H+, He+, O+, O++, and N+ have all been observed with energies up to about 30 eV, but with the majority of ions below about 2 eV); hence, these have been termed upwelling ion events. The upwelling ions are embedded in larger regions of classical light ion polar wind and are persistently found under the following conditions: at geocentric distances greater than 1.4 RE; at all Kp in summer, but only at high Kp in winter. Low-energy conical ions (<30 eV) are only found near the equatorial edge of the events, the latitude of which moves equatorward with increasing Kp and is highly correlated with the location of field-aligned currents. The RIMS data are fully consistent with a “mass spectrometer effect,” whereby light ions and the more energetic O+ ions flow into the lobes and mantle and hence the far-tail plasma sheet, but lower-energy O+ is swept across the polar cap by the convection electric field, potentially acting as a source for the nightside auroral acceleration regions. The occurrence probability of upwelling ion events, as compared to those of low-altitude transversely accelerated core ions and of field-aligned flow, suggests this could be the dominant mechanism for supplying the nightside auroral acceleration region, and subsequently the ring current and near-earth plasma sheet, with ionospheric O+ ions. It is shown that the total rate of O+ outflow in upwelling ion events (greater than 10^25 s^{−1}) is sufficient for the region near the dayside polar cap boundary to be an important ionospheric heavy ion source.