101 resultados para AVIAN CORONAVIRUS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Capsule Avian predators are principally responsible. Aims To document the fate of Spotted Flycatcher nests and to identify the species responsible for nest predation. Methods During 2005-06, purpose-built, remote, digital nest-cameras were deployed at 65 out of 141 Spotted Flycatcher nests monitored in two study areas, one in south Devon and the second on the border of Bedfordshire and Cambridgeshire. Results Of the 141 nests monitored, 90 were successful (non-camera nests, 49 out of 76 successful, camera nests, 41 out of 65). Fate was determined for 63 of the 65 nests monitored by camera, with 20 predation events documented, all of which occurred during daylight hours. Avian predators carried out 17 of the 20 predations, with the principal nest predator identified as Eurasian Jay Garrulus glandarius. The only mammal recorded predating nests was the Domestic Cat Felis catus, the study therefore providing no evidence that Grey Squirrels Sciurus carolinensis are an important predator of Spotted Flycatcher nests. There was no evidence of differences in nest survival rates at nests with and without cameras. Nest remains following predation events gave little clue as to the identity of the predator species responsible. Conclusions Nest-cameras can be useful tools in the identification of nest predators, and may be deployed with no subsequent effect on nest survival. The majority of predation of Spotted Flycatcher nests in this study was by avian predators, principally the Jay. There was little evidence of predation by mammalian predators. Identification of specific nest predators enhances studies of breeding productivity and predation risk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The emergence in 2009 of a swine-origin H1N1 influenza virus as the first pandemic of the 21st Century is a timely reminder of the international public health impact of influenza viruses, even those associated with mild disease. The widespread distribution of highly pathogenic H5N1 influenza virus in the avian population has spawned concern that it may give rise to a human influenza pandemic. The mortality rate associated with occasional human infection by H5N1 virus approximates 60%, suggesting that an H5N1 pandemic would be devastating to global health and economy. To date, the H5N1 virus has not acquired the propensity to transmit efficiently between humans. The reasons behind this are unclear, especially given the high mutation rate associated with influenza virus replication. Here we used a panel of recombinant H5 hemagglutinin (HA) variants to demonstrate the potential for H5 HA to bind human airway epithelium, the predominant target tissue for influenza virus infection and spread. While parental H5 HA exhibited limited binding to human tracheal epithelium, introduction of selected mutations converted the binding profile to that of a current human influenza strain HA. Strikingly, these amino-acid changes required multiple simultaneous mutations in the genomes of naturally occurring H5 isolates. Moreover, H5 HAs bearing intermediate sequences failed to bind airway tissues and likely represent mutations that are an evolutionary "dead end." We conclude that, although genetic changes that adapt H5 to human airways can be demonstrated, they may not readily arise during natural virus replication. This genetic barrier limits the likelihood that current H5 viruses will originate a human pandemic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The NMR structure of a central segment of the previously annotated "SARS-unique domain" (SUD-M; "middle of the SARS-unique domain") in the SARS coronavirus (SARS-CoV) non-structural protein 3 (nsp3) has been determined. SUD-M(513-651) exhibits a macrodomain fold containing the nsp3-residues 528-648, and there is a flexibly extended N-terminal tail with the residues 513-527 and a C-terminal flexible tail of residues 649-651. As a follow-up to this initial result, we also solved the structure of a construct representing only the globular domain of residues 527-651 [SUD-M(527-651)]. NMR chemical shift perturbation experiments showed that SUD-M(527-651) binds single-stranded poly-A and identified the contact area with this RNA on the protein surface, and electrophoretic mobility shift assays then confirmed that SUD-M has higher affinity for purine bases than for pyrimidine bases. In further search for clues to the function, we found that SUD-M(527-651) has the closest three-dimensional structure homology with another domain of nsp3, the ADP-ribose-1''-phosphatase nsp3b, although the two proteins share only 5% sequence identity in the homologous sequence regions. SUD-M(527-651) also shows 3D structure homology with several helicases and NTP-binding proteins, but it does not contain the motifs of catalytic residues found in these structural homologues. The combined results from NMR screening of potential substrates and the structure-based homology studies now form a basis for more focused investigations on the role of the SARS-unique domain in viral infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Localisation of both viral and cellular proteins to the nucleolus is determined by a variety of factors including nucleolar localisation signals (NoLSs), but how these signals operate is not clearly understood. The nucleolar trafficking of wild type viral proteins and chimeric proteins, which contain altered NoLSs, were compared to investigate the role of NoLSs in dynamic nucleolar trafficking. Three viral proteins from diverse viruses were selected which localised to the nucleolus; the coronavirus infectious bronchitis virus nucleocapsid (N) protein, the herpesvirus saimiri ORF57 protein and the HIV-1 Rev protein. The chimeric proteins were N protein and ORF57 protein which had their own NoLS replaced with those from ORF57 and Rev proteins, respectively. By analysing the sub-cellular localisation and trafficking of these viral proteins and their chimeras within and between nucleoli using confocal microscopy and photo-bleaching we show that NoLSs are responsible for different nucleolar localisations and trafficking rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interactions among the multiple factors regulating predator-prey relationships make predation a more complex process than previously thought. The degree to which substandard individuals are captured disproportionately seems to be better a function of the difficulty of prey capture than of the hunting techniques (coursing vs. ambushing predators). That is, when the capture and killing of a prey species is easy, substandard individuals will be predated in proportion to their occurrence in the prey population. In the present study, we made use of eagle owls Bubo bubo and their main prey, the rabbit Oryctolagus cuniculus: (a) the brightness of the white tails of rabbits seems to be correlated with the physical condition of individuals, (b) by using the tails of predated rabbits as an index of individual condition, we found that eagle owls seem to prefer substandard individuals (characterized by duller tails), and (c) by using information from continuous radiotracking of 14 individuals, we suggest that the difficulty of rabbit capture could be low. Although the relative benefits of preying on substandard individuals should considerably decrease when a predator is attacking an easy prey, we hypothesise that the eagle owl preference for substandard individuals could be due to the easy detection of poor individuals by a visual cue, the brightness of the rabbit tail. Several elements allow us to believe that this form of visual communication between a prey and one of its main predators could be more widespread than previously thought. In fact: (a) visual signalling plays a relevant role in intraspecific communication in eagle owls and, consequently, visual signals could also play a role in interspecific interactions, and (b) empirical studies showed that signals may inform the predator that it has been perceived, or that the prey is in a sufficiently healthy state to elude the predator.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mature nonstructural protein-15 (nsp15) from the severe acute respiratory syndrome coronavirus (SARS-CoV) contains a novel uridylate-specific Mn2+-dependent endoribonuclease (NendoU). Structure studies of the full-length form of the obligate hexameric enzyme from two CoVs, SARS-CoV and murine hepatitis virus, and its monomeric homologue, XendoU from Xenopus laevis, combined with mutagenesis studies have implicated several residues in enzymatic activity and the N-terminal domain as the major determinant of hexamerization. However, the tight link between hexamerization and enzyme activity in NendoUs has remained an enigma. Here, we report the structure of a trimmed, monomeric form of SARS-CoV nsp15 (residues 28 to 335) determined to a resolution of 2.9 A. The catalytic loop (residues 234 to 249) with its two reactive histidines (His 234 and His 249) is dramatically flipped by approximately 120 degrees into the active site cleft. Furthermore, the catalytic nucleophile Lys 289 points in a diametrically opposite direction, a consequence of an outward displacement of the supporting loop (residues 276 to 295). In the full-length hexameric forms, these two loops are packed against each other and are stabilized by intimate intersubunit interactions. Our results support the hypothesis that absence of an adjacent monomer due to deletion of the hexamerization domain is the most likely cause for disruption of the active site, offering a structural basis for why only the hexameric form of this enzyme is active.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lymph heart is a sac-like structure on either side of avian tail. In some adult birds, it empties the lymph from the copulatory organ; however, during embryonic development, it is thought to circulate extra-embryonic lymph. Very little is known about the origin, innervation and the cellular changes it undergoes during development. Using immunohistochemistry and gene expression profiling we show that the musculature of the lymph heart is initially composed solely of striated skeletal muscle but later develops an additional layer composed of smooth myofibroblasts. Chick-quail fate-mapping demonstrates that the lymph heart originates from the hypaxial compartments of somites 34-41. The embryonic lymph heart is transiently innervated by somatic motoneurons with no autonomic input. In comparison to body muscles, the lymph heart has different sensitivity to neuromuscular junction blockers (sensitive only to decamethonium). Furthermore, its abundant bungarotoxin-positive acetylcholinesterase receptors are unique as they completely lack specific acetylcholinesterase activity. Several lines of evidence suggest that the lymph heart may possess an intrinsic pacing mechanism. Finally, we assessed the function of the lymph heart during embryogenesis and demonstrate that it is responsible for preventing embryonic oedema in birds, a role previously thought to be played by body skeletal muscle contractions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Although H5N1 avian influenza viruses pose the most obvious imminent pandemic threat, there have been several recent zoonotic incidents involving transmission of H7 viruses to humans. Vaccines are the primary public health defense against pandemics, but reliance on embryonated chickens eggs to propagate vaccine and logistic problems posed by the use of new technology may slow our ability to respond rapidly in a pandemic situation. Objectives: We sought to generate an H7 candidate vaccine virus suitable for administration to humans whose generation and amplification avoided the use of eggs. Methods: We generated a suitable H7 vaccine virus by reverse genetics. This virus, known as RD3, comprises the internal genes of A/Puerto Rico/8/34 with surface antigens of the highly pathogenic avian strain A/Chicken/Italy/13474/99 (H7N1). The multi-basic amino acid site in the HA gene, associated with high pathogenicity in chickens, was removed. Results: The HA modification did not alter the antigenicity of the virus and the resultant single basic motif was stably retained following several passages in Vero and PER. C6 cells. RD3 was attenuated for growth in embryonated eggs, chickens, and ferrets. RD3 induced an antibody response in infected animals reactive against both the homologous virus and other H7 influenza viruses associated with recent infection by H7 viruses in humans. Conclusions: This is the first report of a candidate H7 vaccine virus for use in humans generated by reverse genetics and propagated entirely in mammalian tissue culture. The vaccine has potential use against a wide range of H7 strains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The capacity of the surface glycoproteins of enveloped viruses to mediate virus/cell binding and membrane fusion requires a proper thiol/disulfide balance. Chemical manipulation of their redox state using reducing agents or free sulfhydryl reagents affects virus/cell interaction. Conversely, natural thiol/disulfide rearrangements often occur during the cell interaction to trigger fusogenicity, hence the virus entry. We examined the relationship between the redox state of the 20 cysteine residues of the SARS-CoV (severe acute respiratory syndrome coronavirus) Spike glycoprotein S1 subdomain and its functional properties. Mature S1 exhibited similar to 4 unpaired cysteines, and chemically reduced S1 displaying up to similar to 6 additional unpaired cysteines still bound ACE2 and enabled fusion. In addition, virus/cell membrane fusion occurred in the presence of sulfhydryl-blocking reagents and oxidoreductase inhibitors. Thus, in contrast to various viruses including HIV (human immunodeficiency virus) examined in parallel, the functions of the SARS-CoV Spike glycoprotein exhibit a significant and surprising independence of redox state, which may contribute to the wide host range of the virus. These data suggest clues for molecularly engineering vaccine immunogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The binding specificities of a panel of avian influenza virus subtype H5 hemagglutinin (RA) proteins bearing mutations at key residues in the receptor binding site were investigated. The results demonstrate that two simultaneous mutations in the receptor binding site resulted in H5 RA binding in a pattern similar to that shown by human viruses. Coexpression of the ion channel protein, M2, from most avian and human strains tested protected H5 RA conformation during trafficking, indicating that no genetic barrier to the reassortment of the H5 surface antigen gene with internal genes of human viruses existed at this level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Considerable attention has been given to the impact of climate change on avian populations over the last decade. In this paper we examine two issues with respect to coastal bird populations in the UK: (1) is there any evidence that current populations are declining due to climate change, and (2) how might we predict the response of populations in the future? We review the cause of population decline in two species associated with saltmarsh habitats. The abundance of Common Redshank Tringa totanus breeding on saltmarsh declined by about 23% between the mid-1980s and mid-1990s, but the decline appears to have been caused by an increase in grazing pressure. The number of Twite Carduelis flavirostris wintering on the coast of East Anglia has declined dramatically over recent decades; there is evidence linking this decline with habitat loss but a causal role for climate change is unclear. These examples illustrate that climate change could be having population-level impacts now, but also show that it is dangerous to become too narrowly focused on single issues affecting coastal birds. Making predictions about how populations might respond to future climate change depends on an adequate understanding of important ecological processes at an appropriate spatial scale. We illustrate this with recent work conducted on the Icelandic population of Black-tailed Godwits Limosa limosa islandica that shows large-scale regulatory processes. Most predictive models to date have focused on local populations (single estuary or a group of neighbouring estuaries). We discuss the role such models might play in risk assessment, and the need for them to be linked to larger-scale ecological processes. We argue that future work needs to focus on spatial scale issues and on linking physical models of coastal environments with important ecological processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To study the potential involvement of inhibin A (inhA), inhibin B (inhB), activin A (actA) and follistatin (FS) in the recruitment of follicles into the preovulatory hierarchy, growing follicles (ranging from 1 mm to the largest designated F1) and the three most recent postovulatory follicles (POFs) were recovered from laying hens (n=11). With the exception of <4 mm follicles and POFs, follicle walls were dissected into separate granulosa (G) and theca (T) layers before extraction. Contents of inhA, inhB, actA and FS in tissue extracts were assayed using specific two-site ELISAs and results are expressed per mg DNA. InhB content of both G and T followed a similar developmental pattern, although the content was >4-fold higher in G than in T at all stages. InhB content was very low in follicles <4 nun but increased - 50-fold (P<0.0001) to peak in 7-9 mm follicles, before falling steadily as follicles entered and moved up the follicular hierarchy (40-fold; 8 mm vs F2). In stark contrast, inhA remained very low in prehierarchical follicles (&LE; 9 mm) but then increased progressively as follicles moved up the preovulatory hierarchy to peak in F1 (&SIM; 100-fold increase; P<0.0001); In F1 >97% of inhA was confined to the G layer whereas in 5-9 mm follicles inhA was only. detected in the T layer. Both inhA and inhB contents of POFs were significantly reduced compared with F1. Follicular actA was mainly confined to the T layer although detectable levels were present in G from 9 nun; actA was low between 1 and 9 mm but increased sharply as follicles entered the preovulatory hierarchy (&SIM;6-fold higher in F4; P<0.0001); levels then fell &SIM;2-fold as the follicle progressed to F1. Like actA, FS predominated in the T although significant amounts were also present in the G of prehierarchical follicles (4-9 mm), in contrast to actA, which was absent from the G. The FS content of T rose &SIM;3-fold from 6 mm to a plateau which was sustained until F1. In contrast, the FS content of G was greatest in prehierarchical follicles and fell &SIM;4-fold in F4-F1 follicles. ActA and FS contents of POFs were reduced compared with F1. In vitro studies on follicle wall explants confirmed the striking divergence in the secretion of inhA and inhB during follicle development. These findings of marked stage-dependent differences in the expression of inhA, inhB, actA and FS proteins imply a significant functional role for these peptides in the recruitment and ordered progression of follicles within the avian ovary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 5'-cap-structures of higher eukaryote mRNAs are ribose 2'-O-methylated. Likewise, a number of viruses replicating in the cytoplasm of eukayotes have evolved 2'-O-methyltransferases to modify autonomously their mRNAs. However, a defined biological role of mRNA 2'-O-methylation remains elusive. Here we show that viral mRNA 2'-O-methylation is critically involved in subversion of type-I-interferon (IFN-I) induction. We demonstrate that human and murine coronavirus 2'-O-methyltransferase mutants induce increased IFN-I expression, and are highly IFN-I sensitive. Importantly, IFN-I induction by 2'-O-methyltransferase-deficient viruses is dependent on the cytoplasmic RNA sensor melanoma differentiation-associated gene 5 (MDA5). This link between MDA5-mediated sensing of viral RNA and mRNA 2'-O-methylation suggests that RNA modifications, such as 2'-O-methylation, provide a molecular signature for the discrimination of self and non-self mRNA.