63 resultados para 3-D finite elements


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study aimed to identify key parameters influencing N utilization and develop prediction equations for manure N output (MN), feces N output (FN), and urine N output (UN). Data were obtained under a series of digestibility trials with nonpregnant dry cows fed fresh grass at maintenance level. Grass was cut from 8 different ryegrass swards measured from early to late maturity in 2007 and 2008 (2 primary growth, 3 first regrowth, and 3 second regrowth) and from 2 primary growth early maturity swards in 2009. Each grass was offered to a group of 4 cows and 2 groups were used in each of the 8 swards in 2007 and 2008 for daily measurements over 6 wk; the first group (first 3 wk) and the second group (last 3 wk) assessed early and late maturity grass, respectively. Average values of continuous 3-d data of N intake (NI) and output for individual cows ( = 464) and grass nutrient contents ( = 116) were used in the statistical analysis. Grass N content was positively related to GE and ME contents but negatively related to grass water-soluble carbohydrates (WSC), NDF, and ADF contents ( < 0.01), indicating that accounting for nutrient interrelations is a crucial aspect of N mitigation. Significantly greater ratios of UN:FN, UN:MN, and UN:NI were found with increased grass WSC contents and ratios of N:WSC, N:digestible OM in total DM (DOMD), and N:ME ( < 0.01). Greater NI, animal BW, and grass N contents and lower grass WSC, NDF, ADF, DOMD, and ME concentrations were significantly associated with greater MN, FN, and UN ( < 0.05). The present study highlighted that using grass lower in N and greater in fermentable energy in animals fed solely fresh grass at maintenance level can improve N utilization, reduce N outputs, and shift part of N excretion toward feces rather than urine. These outcomes are highly desirable in mitigation strategies to reduce nitrous oxide emissions from livestock. Equations predicting N output from BW and grass N content explained a similar amount of variability as using NI and grass chemical composition (excluding DOMD and ME), implying that parameters easily measurable in practice could be used for estimating N outputs. In a research environment, where grass DOMD and ME are likely to be available, their use to predict N outputs is highly recommended because they strongly improved of the equations in the current study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this work is the efficient solution of the heat equation with Dirichlet or Neumann boundary conditions using the Boundary Elements Method (BEM). Efficiently solving the heat equation is useful, as it is a simple model problem for other types of parabolic problems. In complicated spatial domains as often found in engineering, BEM can be beneficial since only the boundary of the domain has to be discretised. This makes BEM easier than domain methods such as finite elements and finite differences, conventionally combined with time-stepping schemes to solve this problem. The contribution of this work is to further decrease the complexity of solving the heat equation, leading both to speed gains (in CPU time) as well as requiring smaller amounts of memory to solve the same problem. To do this we will combine the complexity gains of boundary reduction by integral equation formulations with a discretisation using wavelet bases. This reduces the total work to O(h

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Observers generally fail to recover three-dimensional shape accurately from binocular disparity. Typically, depth is overestimated at near distances and underestimated at far distances [Johnston, E. B. (1991). Systematic distortions of shape from stereopsis. Vision Research, 31, 1351–1360]. A simple prediction from this is that disparity-defined objects should appear to expand in depth when moving towards the observer, and compress in depth when moving away. However, additional information is provided when an object moves from which 3D Euclidean shape can be recovered, be this through the addition of structure from motion information [Richards, W. (1985). Structure from stereo and motion. Journal of the Optical Society of America A, 2, 343–349], or the use of non-generic strategies [Todd, J. T., & Norman, J. F. (2003). The visual perception of 3-D shape from multiple cues: Are observers capable of perceiving metric structure? Perception and Psychophysics, 65, 31–47]. Here, we investigated shape constancy for objects moving in depth. We found that to be perceived as constant in shape, objects needed to contract in depth when moving toward the observer, and expand in depth when moving away, countering the effects of incorrect distance scaling (Johnston, 1991). This is a striking example of the failure of shape con- stancy, but one that is predicted if observers neither accurately estimate object distance in order to recover Euclidean shape, nor are able to base their responses on a simpler processing strategy.