97 resultados para 090801 Food Chemistry and Molecular Gastronomy (excl. Wine)
Resumo:
European agricultural and environmental policy has evolved considerably over the last 15 years. In this paper the changes in farm businesses in an Environmentally Sensitive Area in England are evaluated based on two surveys with the same farmers at the start and end of this period. The rate of participation in the environmental scheme had increased significantly at a time when Government led goals in this area had developed and become more output focussed. A combination of policy, market and animal health status changes had encouraged a number to leave cattle production, and though remaining with stock and grass they had decided against any extensive development in the direction of pluriactivity – with or without Government encouragement. This left the future of this group in some uncertainty given that two significant forms of financial support, the environmental scheme and the Hill Farm Allowance, were due to close.
Resumo:
Maculalactone A is the most abundant secondary metabolite in Kyrtuthrix maculans, a marine cyanobacterium found in the mid-high shore of moderately exposed to sheltered rocky shores in Hong Kong and South East Asia. This species appears to survive as pure colonies forming distinct black zones on the rock. Maculalactone A may provide K. maculans with a chemical defense against several marine organisms, including the common grazer, Chlorostoma argyrostoma and settlement by larvae of the barnacles, Tetraclita japonica, Balanus amphitrite and Ibla cumingii. The natural concentration of maculalactone A varied with season and also with tidal height on the shore and although a strong positive linear correlation was observed between maculalactone A concentration and herbivore grazing pressure, manipulative experiments demonstrated that grazing pressure was not directly responsible for inducing the biosynthesis of this metabolite. The potential of maculalactone A as a natural marine anti-fouling agent (i.e. as an alternative to environmentally-damaging copper- and tin-based anti-fouling paints) was investigated after achieving a gram-scale synthesis of this compound. Preliminary field trials with anti-fouling paints which contained synthetic maculalactone A as the active principle have confirmed that this compound seems to have a specific activity against molluscan settlers.
Resumo:
The consumption of flavonoid-rich foods and beverages has been suggested to limit the neurodegeneration associated with a variety of neurological disorders and to prevent or reverse normal or abnormal deteriorations in cognitive performance. Flavonoids mediate these effects via a number of routes, including a potential to protect neurons against injury induced by neurotoxins, an ability to suppress neuroinflammation and a potential to promote memory, learning and cognitive function. Originally, it was thought that such actions were mediated by the antioxidant capacity of flavonoids. However, their limited absorption and their low bioavailability in the brain suggest that this explanation is unlikely. Instead, this multiplicity of effects appears to be underpinned by three separate processes: first, through their interactions with important neuronal and glial signalling cascades in the brain, most notably the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways that regulate pro-survival transcription factors and gene expression; second, through an ability to improve peripheral and cerebral blood flow and to trigger angiogenesis and neurogenesis in the hippocampus; third, by their capacity to directly react with and scavenge neurotoxic species and pro-inflammatory agents produced in the brain as a result of both normal and abnormal brain ageing. The present review explores the potential inhibitory or stimulatory actions of flavonoids within these three systems and describes how such interactions are likely to underlie neurological effects.
Resumo:
The purpose of the paper is to identify and describe differences in cognitive structures between consumer segments with differing levels of acceptance of genetically modified (GM) food. Among a sample of 60 mothers three segments are distinguished with respect to purchase intentions for GM yogurt: non-buyers, maybe-buyers and likely-buyers. A homogeneity test for the elicited laddering data suggests merging maybe- and likely-buyers, yielding two segments termed accepters and rejecters. Still, overlap between the segments’ cognitive structures is considerable, in particular with respect to a health focus in the evaluation of perceived consequences and ambivalence in technology assessment. Distinct differences are found in the assessment of benefits offered by GM food and the importance of values driving product evaluation and thus purchase decisions.
Resumo:
A 1,1' bis(diphenylphosphino ferrocene) dioxide complex of uranyl nitrate was synthesized and characterized by IR, H-1 and P-31{H-1} NMR spectroscopic and X-ray diffraction methods. The structure of the compound shows that the uranium atom is surrounded by eight oxygen atoms in a hexagonal bi-pyramidal geometry. Two oxygen atoms from 1,1' bis(diphenylphosphino ferrocene) dioxide ligand and four oxygen atoms from the nitrate groups form a planar hexagon. The two uranyl oxygen atoms occupy the axial position. The 1,1' bis(diphenylphosphino ferrocene) dioxide ligand acts as a bidentate chelating ligand with a bite angle of 71.56(8)degrees around the uranium(VI) atom, which is much smaller in value compare to any of the previously reported values (90.1 degrees-154.0 degrees) for this ligand.
Resumo:
The forelimbs of higher vertebrates are composed of two portions: the appendicular region (stylopod, zeugopod and autopod) and the less prominent proximal girdle elements (scapula and clavicle) that brace the limb to the main trunk axis. We show that the formation of the muscles of the proximal limb occurs through two distinct mechanisms. The more superficial girdle muscles (pectoral and latissimus dorsi) develop by the “In–Out” mechanism whereby migration of myogenic cells from the somites into the limb bud is followed by their extension from the proximal limb bud out onto the thorax. In contrast, the deeper girdle muscles (e.g. rhomboideus profundus and serratus anterior) are induced by the forelimb field which promotes myotomal extension directly from the somites. Tbx5 inactivation demonstrated its requirement for the development of all forelimb elements which include the skeletal elements, proximal and distal muscles as well as the sternum in mammals and the cleithrum of fish. Intriguingly, the formation of the diaphragm musculature is also dependent on the Tbx5 programme. These observations challenge our classical views of the boundary between limb and trunk tissues. We suggest that significant structures located in the body should be considered as components of the forelimb.
Resumo:
The IR and ligand field spectra and the structure of the mixed-ligand compound [N,N-dimethyl-N′-ethyl-1,2-diaminoethane(1-phenyl-1,3-butanedionato)(perchlorato)copper(II)]), [Cu(dmeen)bzac(OClO3)], are reported. The structure was determined by single crystal X-ray diffraction analysis (triclinic, space group ). The structure is square pyramidal with the apical position occupied by one oxygen of the tetrahedral perchlorato group (distance from copper 2.452(5) Å). The plane of the phenyl ring is tilted forming an angle of 16.72(14)° with the plane of the β-dionato moiety. The nitrogenous base adopts the gauche conformation with torsional angle of 108.72(14)°. The ethyl group is cis oriented relative to the phenyl group, occupying the equatorial position with the vector of the carbon-nitrogen bond forming an angle of 143.9(3)° with the CuNN plane. The interactions of the adjacent axial hydrogen with an oxygen of the perchlorato group result in hydrogen bond formation. The IR spectra reveal that in the solid state the Br− or Cl− displace easily the ClO4− group. The shifts in the ligand field spectra indicate that polar solvents participate in donor-acceptor interactions with the metal centre along an axis perpendicular to the CuN2O2 plane.
Resumo:
Antimicrobial drug resistance is a global challenge for the 21st century with the emergence of resistant bacterial strains worldwide. Transferable resistance to beta-lactam antimicrobial drugs, mediated by production of extended-spectrum beta-lactamases (ESBLs), is of particular concern. In 2004, an ESBL-carrying IncK plasmid (pCT) was isolated from cattle in the United Kingdom. The sequence was a 93,629-bp plasmid encoding a single antimicrobial drug resistance gene, bla(CTX-M-14). From this information, PCRs identifying novel features of pCT were designed and applied to isolates from several countries, showing that the plasmid has disseminated worldwide in bacteria from humans and animals. Complete DNA sequences can be used as a platform to develop rapid epidemiologic tools to identify and trace the spread of plasmids in clinically relevant pathogens, thus facilitating a better understanding of their distribution and ability to transfer between bacteria of humans and animals.