98 resultados para 060311 Speciation and Extinction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Aims Highly variable, yet possibly convergent, morphology and lack of sequence variation have severely hindered production of a robust phylogenetic framework for the genus Ophrys. The aim of this study is to produce this framework as a basis for more rigorous species delimitation and conservation recommendations. Methods Nuclear and plastid DNA sequencing and amplified fragment length polymorphism (AFLP) were performed on 85 accessions of Ophrys, spanning the full range of species aggregates currently recognized. Data were analysed using a combination of parsimony and Bayesian tree-building techniques and by principal coordinates analysis. Key Results Complementary phylogenetic analyses and ordinations using nuclear, plastid and AFLP datasets identify ten genetically distinct groups (six robust) within the genus that may in turn be grouped into three sections (treated as subgenera by some authors). Additionally, genetic evidence is provided for a close relationship between the O. tenthredinifera, O. bombyliflora and O. speculum groups. The combination of these analytical techniques provides new insights into Ophrys systematics, notably recognition of the novel O. umbilicata group. Conclusions Heterogeneous copies of the nuclear ITS region show that some putative Ophrys species arose through hybridization rather than divergent speciation. The supposedly highly specific pseudocopulatory pollination syndrome of Ophrys is demonstrably 'leaky', suggesting that the genus has been substantially over-divided at the species level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A key concern for conservation biologists is whether populations of plants and animals are likely to fluctuate widely in number or remain relatively stable around some steady-state value. In our study of 634 populations of mammals, birds, fish and insects, we find that most can be expected to remain stable despite year to year fluctuations caused by environmental factors. Mean return rates were generally around one but were higher in insects (1.09 +/- 0.02 SE) and declined with body size in mammals. In general, this is good news for conservation, as stable populations are less likely to go extinct. However, the lower return rates of the large mammals may make them more vulnerable to extinction. Our estimates of return rates were generally well below the threshold for chaos, which makes it unlikely that chaotic dynamics occur in natural populations - one of ecology's key unanswered questions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A long-standing debate in evolutionary biology concerns whether species diverge gradually through time or by punctuational episodes at the time of speciation. We found that approximately 22% of substitutional changes at the DNA level can be attributed to punctuational evolution, and the remainder accumulates from background gradual divergence. Punctuational effects occur at more than twice the rate in plants and fungi than in animals, but the proportion of total divergence attributable to punctuational change does not vary among these groups. Punctuational changes cause departures from a clock-like tempo of evolution, suggesting that they should be accounted for in deriving dates from phylogenies. Punctuational episodes of evolution may play a larger role in promoting evolutionary divergence than has previously been appreciated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Re-introduction is a technique widely used in the conservation of threatened bird species. With advances in aviculture the use of captive-produced individuals as the release stock is becoming more commonplace, and ideally, survival of captive-produced, released individuals should be no different from their wild-bred counterparts. During the late 1980s the Critically Endangered Mauritius kestrel (Falco punctatus) was successfully re-introduced into the Bambous mountain range, Mauritius, some 30 years after its local extinction. Between 1987 and 2001 the developing population was closely monitored enabling us to construct re-sighting histories for 88 released and 284 wild-bred kestrels. We used age-structured models in the survival analysis software program MARK to determine if an individual's origin influenced its subsequent survival. Our analysis indicated no compelling evidence for reduced survival among juvenile captive-reared and released individuals, relative to their wild-bred counterparts, across the majority of cohorts and only limited evidence of a cohort-specific effect. This study illustrates that despite the lack of a formal experimental approach it is still feasible to conduct an assessment of re-introduction outcomes and techniques. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The management of threatened species is an important practical way in which conservationists can intervene in the extinction process and reduce the loss of biodiversity. Understanding the causes of population declines (past, present and future) is pivotal to designing effective practical management. This is the declining-population paradigm identified by Caughley. 2. There are three broad classes of ecological tool used by conservationists to guide management decisions for threatened species: statistical models of habitat use, demographic models and behaviour-based models. Each of these is described here, illustrated with a case study and evaluated critically in terms of its practical application. 3. These tools are fundamentally different. Statistical models of habitat use and demographic models both use descriptions of patterns in abundance and demography, in relation to a range of factors, to inform management decisions. In contrast, behaviour-based models describe the evolutionary processes underlying these patterns, and derive such patterns from the strategies employed by individuals when competing for resources under a specific set of environmental conditions. 4. Statistical models of habitat use and demographic models have been used successfully to make management recommendations for declining populations. To do this, assumptions are made about population growth or vital rates that will apply when environmental conditions are restored, based on either past data collected under favourable environmental conditions or estimates of these parameters when the agent of decline is removed. As a result, they can only be used to make reliable quantitative predictions about future environments when a comparable environment has been experienced by the population of interest in the past. 5. Many future changes in the environment driven by management will not have been experienced by a population in the past. Under these circumstances, vital rates and their relationship with population density will change in the future in a way that is not predictable from past patterns. Reliable quantitative predictions about population-level responses then need to be based on an explicit consideration of the evolutionary processes operating at the individual level. 6. Synthesis and applications. It is argued that evolutionary theory underpins Caughley's declining-population paradigm, and that it needs to become much more widely used within mainstream conservation biology. This will help conservationists examine critically the reliability of the tools they have traditionally used to aid management decision-making. It will also give them access to alternative tools, particularly when predictions are required for changes in the environment that have not been experienced by a population in the past.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coatings and filters for spaceflight far-infrared components require a robust, non-absorptive low-index thin film material to contrast with the typically higher refractive index infrared materials. Barium fluoride is one such material for the 10 to 20µm wavelength infrared region, however its optical and mechanical properties vary depending on the process used to deposit it in thin film form. Thin films of dielectric produced by thermal evaporation are well documented as having a lower packing density and refractive index than bulk material. The porous and columnar micro structure of these films causes possible deterioration of their performance in varied environmental conditions, primarily because of the moisture absorption. Dielectric thin films produced by the more novel technique of ion-beam sputtering are denser with no columnar micro structure and have a packing density and refractive index similar to the bulk material. A comparative study of Barium Fluoride (BaF2) thin films made by conventional thermal evaporation and ion-beam sputtering is reported. Films of similar thicknesses are deposited on Cadmium Telluride and Germanium substrates. The optical and mechanical properties of these films are then examined. The refractive index n of the films is obtained from applying the modified Manifacier's evvelope method to the spectral measurements made on a Perkin Elmer 580 spectrophotometer. An estimate is also made of the value of the extinction coefficient k in the infrared wavelength transparent region of the thin film. In order to study the mechanical properties of the BaF2 films, and evaluate their usefulness in spaceflight infrared filters and coatings, the thin film samples are subjected to MIL-F-48616 environmental tests. Comparisons are made of their performance under these tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Figs and fig-pollinating wasp species usually display a highly specific one-to-one association. However, more and more studies have revealed that the "one-to-one" rule has been broken. Co-pollinators have been reported, but we do not yet know how they evolve. They may evolve from insect speciation induced or facilitated by Wolbachia which can manipulate host reproduction and induce reproductive isolation. In addition, Wolbachia can affect host mitochondrial DNA evolution, because of the linkage between Wolbachia and associated mitochondrial haplotypes, and thus confound host phylogeny based on mtDNA. Previous research has shown that fig wasps have the highest incidence of Wolbachia infection in all insect taxa, and Wolbachia may have great influence on fig wasp biology. Therefore, we look forward to understanding the influence of Wolbachia on mitochondrial DNA evolution and speciation in fig wasps. Results We surveyed 76 pollinator wasp specimens from nine Ficus microcarpa trees each growing at a different location in Hainan and Fujian Provinces, China. We found that all wasps were morphologically identified as Eupristina verticillata, but diverged into three clades with 4.22-5.28% mtDNA divergence and 2.29-20.72% nuclear gene divergence. We also found very strong concordance between E. verticillata clades and Wolbachia infection status, and the predicted effects of Wolbachia on both mtDNA diversity and evolution by decreasing mitochondrial haplotypes. Conclusions Our study reveals that the pollinating wasp E. verticillata on F. microcarpa has diverged into three cryptic species, and Wolbachia may have a role in this divergence. The results also indicate that Wolbachia strains infecting E. verticillata have likely resulted in selective sweeps on host mitochondrial DNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a continuation of a variable radius niche technique called Dynamic Niche Clustering developed by (Gan & Warwick, 1999) is presented. The technique employs a separate dynamic population of overlapping niches that coexists alongside the normal population. An empirical analysis of the updated methodology on a large group of standard optimisation test-bed functions is also given. The technique is shown to perform almost as well as standard fitness sharing with regards to stability and the accuracy of peak identification, but it outperforms standard fitness sharing with regards to time complexity. It is also shown that the technique is capable of forming niches of varying size depending on the characteristics of the underlying peak that the niche is populating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes advances in ground-based thermodynamic profiling of the lower troposphere through sensor synergy. The well-documented integrated profiling technique (IPT), which uses a microwave profiler, a cloud radar, and a ceilometer to simultaneously retrieve vertical profiles of temperature, humidity, and liquid water content (LWC) of nonprecipitating clouds, is further developed toward an enhanced performance in the boundary layer and lower troposphere. For a more accurate temperature profile, this is accomplished by including an elevation scanning measurement modus of the microwave profiler. Height-dependent RMS accuracies of temperature (humidity) ranging from 0.3 to 0.9 K (0.5–0.8 g m−3) in the boundary layer are derived from retrieval simulations and confirmed experimentally with measurements at distinct heights taken during the 2005 International Lindenberg Campaign for Assessment of Humidity and Cloud Profiling Systems and its Impact on High-Resolution Modeling (LAUNCH) of the German Weather Service. Temperature inversions, especially of the lower boundary layer, are captured in a very satisfactory way by using the elevation scanning mode. To improve the quality of liquid water content measurements in clouds the authors incorporate a sophisticated target classification scheme developed within the European cloud observing network CloudNet. It allows the detailed discrimination between different types of backscatterers detected by cloud radar and ceilometer. Finally, to allow IPT application also to drizzling cases, an LWC profiling method is integrated. This technique classifies the detected hydrometeors into three different size classes using certain thresholds determined by radar reflectivity and/or ceilometer extinction profiles. By inclusion into IPT, the retrieved profiles are made consistent with the measurements of the microwave profiler and an LWC a priori profile. Results of IPT application to 13 days of the LAUNCH campaign are analyzed, and the importance of integrated profiling for model evaluation is underlined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the statistical properties of tropical ice clouds (ice water content, visible extinction, effective radius, and total number concentration) derived from 3 yr of ground-based radar–lidar retrievals from the U.S. Department of Energy Atmospheric Radiation Measurement Climate Research Facility in Darwin, Australia, are compared with the same properties derived using the official CloudSat microphysical retrieval methods and from a simpler statistical method using radar reflectivity and air temperature. It is shown that the two official CloudSat microphysical products (2B-CWC-RO and 2B-CWC-RVOD) are statistically virtually identical. The comparison with the ground-based radar–lidar retrievals shows that all satellite methods produce ice water contents and extinctions in a much narrower range than the ground-based method and overestimate the mean vertical profiles of microphysical parameters below 10-km height by over a factor of 2. Better agreements are obtained above 10-km height. Ways to improve these estimates are suggested in this study. Effective radii retrievals from the standard CloudSat algorithms are characterized by a large positive bias of 8–12 μm. A sensitivity test shows that in response to such a bias the cloud longwave forcing is increased from 44.6 to 46.9 W m−2 (implying an error of about 5%), whereas the negative cloud shortwave forcing is increased from −81.6 to −82.8 W m−2. Further analysis reveals that these modest effects (although not insignificant) can be much larger for optically thick clouds. The statistical method using CloudSat reflectivities and air temperature was found to produce inaccurate mean vertical profiles and probability distribution functions of effective radius. This study also shows that the retrieval of the total number concentration needs to be improved in the official CloudSat microphysical methods prior to a quantitative use for the characterization of tropical ice clouds. Finally, the statistical relationship used to produce ice water content from extinction and air temperature obtained by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite is evaluated for tropical ice clouds. It is suggested that the CALIPSO ice water content retrieval is robust for tropical ice clouds, but that the temperature dependence of the statistical relationship used should be slightly refined to better reproduce the radar–lidar retrievals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present paper we characterize the statistical properties of non-precipitating tropical ice clouds (deep ice anvils resulting from deep convection and cirrus clouds) over Niamey, Niger, West Africa, and Darwin, northern Australia, using ground-based radar–lidar observations from the Atmospheric Radiation Measurement (ARM) programme. The ice cloud properties analysed in this paper are the frequency of ice cloud occurrence, cloud fraction, the morphological properties (cloud-top height, base height, and thickness), the microphysical and radiative properties (ice water content, visible extinction, effective radius, terminal fall speed, and concentration), and the internal cloud dynamics (in-cloud vertical air velocity). The main highlight of the paper is that it characterizes for the first time the probability density functions of the tropical ice cloud properties, their vertical variability and their diurnal variability at the same time. This is particularly important over West Africa, since the ARM deployment in Niamey provides the first vertically resolved observations of non-precipitating ice clouds in this crucial area in terms of redistribution of water and energy in the troposphere. The comparison between the two sites also provides an additional observational basis for the evaluation of the parametrization of clouds in large-scale models, which should be able to reproduce both the statistical properties at each site and the differences between the two sites. The frequency of ice cloud occurrence is found to be much larger over Darwin when compared to Niamey, and with a much larger diurnal variability, which is well correlated with the diurnal cycle of deep convective activity. The diurnal cycle of the ice cloud occurrence over Niamey is also much less correlated with that of deep convective activity than over Darwin, probably owing to the fact that Niamey is further away from the deep convective sources of the region. The frequency distributions of cloud fraction are strongly bimodal and broadly similar over the two sites, with a predominance of clouds characterized either by a very small cloud fraction (less than 0.3) or a very large cloud fraction (larger than 0.9). The ice clouds over Darwin are also much thicker (by 1 km or more statistically) and are characterized by a much larger diurnal variability than ice clouds over Niamey. Ice clouds over Niamey are also characterized by smaller particle sizes and fall speeds but in much larger concentrations, thereby carrying more ice water and producing more visible extinction than the ice clouds over Darwin. It is also found that there is a much larger occurrence of downward in-cloud air motions less than 1 m s−1 over Darwin, which together with the larger fall speeds retrieved over Darwin indicates that the life cycle of ice clouds is probably shorter over Darwin than over Niamey.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A solution of the lidar equation is discussed, that permits combining backscatter and depolarization measurements to quantitatively distinguish two different aerosol types with different depolarization properties. The method has been successfully applied to simultaneous observations of volcanic ash and boundary layer aerosol obtained in Exeter, United Kingdom, on 16 and 18 April 2010, permitting the contribution of the two aerosols to be quantified separately. First a subset of the atmospheric profiles is used where the two aerosol types belong to clearly distinguished layers, for the purpose of characterizing the ash in terms of lidar ratio and depolarization. These quantities are then used in a three‐component atmosphere solution scheme of the lidar equation applied to the full data set, in order to compute the optical properties of both aerosol types separately. On 16 April a thin ash layer, 100–400 m deep, is observed (average and maximum estimated ash optical depth: 0.11 and 0.2); it descends from ∼2800 to ∼1400 m altitude over a 6‐hour period. On 18 April a double ash layer, ∼400 m deep, is observed just above the morning boundary layer (average and maximum estimated ash optical depth: 0.19 and 0.27). In the afternoon the ash is entrained into the boundary layer, and the latter reaches a depth of ∼1800 m (average and maximum estimated ash optical depth: 0.1 and 0.15). An additional ash layer, with a very small optical depth, was observed on 18 April at an altitude of 3500–4000 m. By converting the lidar optical measurements using estimates of volcanic ash specific extinction, derived from other works, the observations seem to suggest approximate peak ash concentrations of ∼1500 and ∼1000 mg/m3,respectively, on the two observations dates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four new 6,6′-bis(1,2,4-triazin-3-yl)-2,2′-bipyridine (BTBP) ligands, which contain either additional alkyl groups on the pyridine rings or seven-membered aliphatic rings attached to the triazine rings, have been synthesized, and the effects of the additional alkyl substitution in the 4- and 4′-positions of the pyridine rings on their extraction properties with LnIII and AnIII cations in simulated nuclear waste solutions have been studied. The speciation of ligand 13 with some trivalent lanthanide nitrates was elucidated by 1H NMR spectroscopic titrations and ESI-MS. Although 13 formed both 1:1 and 1:2 complexes with LaIII and YIII, only 1:2 complexes were observed with EuIII and CeIII. Quite unexpectedly, both alkyl-substituted ligands 12 and 13 showed lower solubilities in certain diluents than the unsubstituted ligand CyMe4-BTBP. Compared to CyMe4-BTBP, alkyl-substitution was found to decrease the rates of metal-ion extraction of the ligands in both 1-octanol and cyclohexanone. A highly efficient (DAm > 10) and selective (SFAm/Eu > 90) extraction was observed for 12 and 13 in cyclohexanone and for 13 in 1-octanol in the presence of a phase-transfer agent. The implications of these results for the design of improved extractants for radioactive waste treatment are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The single scattering albedo w_0l in atmospheric radiative transfer is the ratio of the scattering coefficient to the extinction coefficient. For cloud water droplets both the scattering and absorption coefficients, thus the single scattering albedo, are functions of wavelength l and droplet size r. This note shows that for water droplets at weakly absorbing wavelengths, the ratio w_0l(r)/w_0l(r0) of two single scattering albedo spectra is a linear function of w_0l(r). The slope and intercept of the linear function are wavelength independent and sum to unity. This relationship allows for a representation of any single scattering albedo spectrum w_0l(r) via one known spectrum w_0l(r0). We provide a simple physical explanation of the discovered relationship. Similar linear relationships were found for the single scattering albedo spectra of non-spherical ice crystals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liquid clouds play a profound role in the global radiation budget but it is difficult to remotely retrieve their vertical profile. Ordinary narrow field-of-view (FOV) lidars receive a strong return from such clouds but the information is limited to the first few optical depths. Wideangle multiple-FOV lidars can isolate radiation scattered multiple times before returning to the instrument, often penetrating much deeper into the cloud than the singly-scattered signal. These returns potentially contain information on the vertical profile of extinction coefficient, but are challenging to interpret due to the lack of a fast radiative transfer model for simulating them. This paper describes a variational algorithm that incorporates a fast forward model based on the time-dependent two-stream approximation, and its adjoint. Application of the algorithm to simulated data from a hypothetical airborne three-FOV lidar with a maximum footprint width of 600m suggests that this approach should be able to retrieve the extinction structure down to an optical depth of around 6, and total opticaldepth up to at least 35, depending on the maximum lidar FOV. The convergence behavior of Gauss-Newton and quasi-Newton optimization schemes are compared. We then present results from an application of the algorithm to observations of stratocumulus by the 8-FOV airborne “THOR” lidar. It is demonstrated how the averaging kernel can be used to diagnose the effective vertical resolution of the retrieved profile, and therefore the depth to which information on the vertical structure can be recovered. This work enables exploitation of returns from spaceborne lidar and radar subject to multiple scattering more rigorously than previously possible.