75 resultados para 0404 Geophysics
Resumo:
Space is a dangerous place for humans, once we step beyond the rotection of Earth’s atmosphere and magnetic field. Galactic cosmic rays and bursts of charged particles from the Sun damaging to health happen with alarming frequency – the Apollo astronauts were very lucky. Understanding the physics of radiation from distinct sources in space will be useful to help future space voyagers plan journeys in greater safety, and produce effective shields for these unavoidable events on journeys to Mars or beyond.
Resumo:
Stellar astronomy tells us much about the long-term evolution of our Sun while forensic evidence (for example, cosmic-ray products in ice cores) gives us indications of its fluctuations over the last millennium. However, such studies do not give us a sufficiently detailed understanding of solar change over the last century to allow us to detect and quantify any role that the Sun might have played in the observed rise in average surface temperatures on Earth. This paper describes recent research that has filled this gap by applying advances in our understanding of the effects and structure of the solar wind to historical data on the Earth's magnetic field.
Resumo:
On 4 June last year the first attempt to make three-dimensional measurements in space was lost when the Ariane 5 rocket veered off course and self-destructed, 39 s into its maiden flight. On board were four identical spacecraft which made up Cluster,a mission that the European Space Agency called a “cornerstone” of its Horizon 2000 scientific programme. A full description of the Cluster satellites is given in a special issue of Space Science Reviews (Escoubet et al. 1997). Their loss dealt a devastating blow to the Cluster scientists and to those working on other missions and projects planned to interact with Cluster. Many discoveries have been made during the 15 years in which Cluster progressed from an idea to the state-of-the-art satellites that were on top of Ariane 501 on 4 June. However, these discoveries invariably underline rather than undermine the importance of Cluster. Now plans to recover the unique and exciting research that was to be done using Cluster are well advanced.
Resumo:
Earth's cusps are magnetic field features in the magnetosphere associated with regions through which plasma from the Sun can have direct access to the upper atmosphere. Recently, new ground-based observations, combined with in situ satellite measurements, have led the way in reinterpreting cusp signatures. These observations, combined with theoretical advances, have stimulated new interest in the solar wind-magnetosphere-ionosphere coupling chain. This coupling process is important because it causes both momentum and energy from the solar wind to enter into the near-Earth region. Here we describe the current ideas concerning the cusps and the supporting observational evidence which have evolved over the past 30 years. We include discussion on the plasma entry process, particle motion between the magnetopause and ionosphere, ground optical and radar measurements, and transient events. We also review the important questions that remain to be answered.
Resumo:
Advances in our understanding of the large-scale electric and magnetic fields in the coupled magnetosphere-ionosphere system are reviewed. The literature appearing in the period January 1991–June 1993 is sorted into 8 general areas of study. The phenomenon of substorms receives the most attention in this literature, with the location of onset being the single most discussed issue. However, if the magnetic topology in substorm phases was widely debated, less attention was paid to the relationship of convection to the substorm cycle. A significantly new consensus view of substorm expansion and recovery phases emerged, which was termed the ‘Kiruna Conjecture’ after the conference at which it gained widespread acceptance. The second largest area of interest was dayside transient events, both near the magnetopause and the ionosphere. It became apparent that these phenomena include at least two classes of events, probably due to transient reconnection bursts and sudden solar wind dynamic pressure changes. The contribution of both types of event to convection is controversial. The realisation that induction effects decouple electric fields in the magnetosphere and ionosphere, on time scales shorter than several substorm cycles, calls for broadening of the range of measurement techniques in both the ionosphere and at the magnetopause. Several new techniques were introduced including ionospheric observations which yield reconnection rate as a function of time. The magnetospheric and ionospheric behaviour due to various quasi-steady interplanetary conditions was studied using magnetic cloud events. For northward IMF conditions, reverse convection in the polar cap was found to be predominantly a summer hemisphere phenomenon and even for extremely rare prolonged southward IMF conditions, the magnetosphere was observed to oscillate through various substorm cycles rather than forming a steady-state convection bay.
Resumo:
This paper presents a novel extraction device for water and noble gases from speleothem samples for noble gas paleotemperature determination. The “combined vacuum crushing and sieving (CVCS) system” was designed to reduce the atmospheric noble gas contents from air inclusions in speleothem samples by up to 2 orders of magnitude without adsorbing atmospheric noble gases onto the freshly produced grain surfaces, a process that had often hampered noble gas temperature (NGT) determination in the past. We also present the results from first performance tests of the CVCS system processing stalagmite samples grown at a known temperature. This temperature is reliably reproduced by the NGTs derived from Ar, Kr, and Xe extracted from the samples. The CVCS system is, therefore, suitable for routine determinations of accurate NGTs. In combination with stalagmite dating, these NGTs will allow reconstructing past regional temperature evolutions, and also support the interpretation of the often complex stable isotope records preserved in the stalagmites' calcite.
Resumo:
Purpose This study investigated whether vergence and accommodation development in pre-term infants is pre-programmed or is driven by experience. Methods 32 healthy infants, born at mean 34 weeks gestation (range 31.2-36 weeks) were compared with 45 healthy full-term infants (mean 40.0 weeks) over a 6 month period, starting at 4-6 weeks post-natally. Simultaneous accommodation and convergence to a detailed target were measured using a Plusoptix PowerRefII infra-red photorefractor as a target moved between 0.33m and 2m. Stimulus/response gains and responses at 0.33m and 2m were compared by both corrected (gestational) age and chronological (post-natal) age. Results When compared by their corrected age, pre-term and full-term infants showed few significant differences in vergence and accommodation responses after 6-7 weeks of age. However, when compared by chronological age, pre-term infants’ responses were more variable, with significantly reduced vergence gains, reduced vergence response at 0.33m, reduced accommodation gain, and increased accommodation at 2m, compared to full-term infants between 8-13 weeks after birth. Conclusions When matched by corrected age, vergence and accommodation in pre-term infants show few differences from full-term infants’ responses. Maturation appears pre-programmed and is not advanced by visual experience. Longer periods of immature visual responses might leave pre-term infants more at risk of development of oculomotor deficits such as strabismus.
Resumo:
Arches, streamers, polar lights, merry dancers… just a few of many names used to describe the aurora borealis in historical documents in the UK. We have compiled a new catalogue of 20591 independent reports of auroral sightings from the British Isles and Ireland for 1700–1975 using observatory yearbooks, the diaries of amateur observers, newspaper reports and the scientific literature. Our aim is to provide an independent data series that can aid understanding of longterm solar variability, alongside cosmogenic isotope data and historic records of geomagnetic activity and sunspots.
Resumo:
The Solar Stormwatch team reviews progress and prospects for this highly effective citizen-science project focused on the Sun.
Resumo:
The Madden-Julian oscillation (MJO) is a convectively coupled 30-70 day (intraseasonal) tropical atmospheric mode that drives variations in global weather, but which is poorly simulated in most atmospheric general circulation models. Over the past two decades, field campaigns and modeling experiments have suggested that tropical atmosphere-ocean interactions may sustain or amplify the pattern of enhanced and suppressed atmospheric convection that defines the MJO, and encourage its eastward propagation through the Indian and Pacific Oceans. New observations collected during the past decade have advanced our understand of the ocean response to atmospheric MJO forcing and the resulting intraseasonal sea surface temperature (SST) fluctuations. Numerous modeling studies have revealed a considerable impact of the mean state on MJO ocean-atmosphere coupled processes, as well as the importance of resolving the diurnal cycle of atmosphere--upper-ocean interactions. New diagnostic methods provide insight to atmospheric variability and physical processes associated with the MJO, but offer limited insight on the role of ocean feedbacks. Consequently, uncertainty remains concerning the role of the ocean in MJO theory. Our understanding of how atmosphere-ocean coupled processes affect the MJO can be improved by collecting observations in poorly sampled regions of MJO activity, assessing oceanic and atmospheric drivers of surface fluxes, improving the representation of upper-ocean mixing in coupled-model simulations, designing model experiments that minimize mean-state differences, and developing diagnostic tools to evaluate the nature and role of coupled ocean-atmosphere processes over the MJO cycle.
Resumo:
Detailed observations of the solar system planets reveal a wide variety of local atmospheric conditions. Astronomical observations have revealed a variety of extrasolar planets none of which resembles any of the solar system planets in full. Instead, the most massive amongst the extrasolar planets, the gas giants, appear very similar to the class of (young) Brown Dwarfs which are amongst the oldest objects in the universe. Despite of this diversity, solar system planets, extrasolar planets and Brown Dwarfs have broadly similar global temperatures between 300K and 2500K. In consequence, clouds of different chemical species form in their atmospheres. While the details of these clouds differ, the fundamental physical processes are the same. Further to this, all these objects were observed to produce radio and X-ray emission. While both kinds of radiation are well studied on Earth and to a lesser extent on the solar system planets, the occurrence of emission that potentially originate from accelerated electrons on Brown Dwarfs, extrasolar planets and protoplanetary disks is not well understood yet. This paper offers an interdisciplinary view on electrification processes and their feedback on their hosting environment in meteorology, volcanology, planetology and research on extrasolar planets and planet formation.
Resumo:
We review recent progress in understanding the role of sea ice, land surface, stratosphere, and aerosols in decadal-scale predictability and discuss the perspectives for improving the predictive capabilities of current Earth system models (ESMs). These constituents have received relatively little attention because their contribution to the slow climatic manifold is controversial in comparison to that of the large heat capacity of the oceans. Furthermore, their initialization as well as their representation in state-of-the-art climate models remains a challenge. Numerous extraoceanic processes that could be active over the decadal range are proposed. Potential predictability associated with the aforementioned, poorly represented, and scarcely observed constituents of the climate system has been primarily inspected through numerical simulations performed under idealized experimental settings. The impact, however, on practical decadal predictions, conducted with realistically initialized full-fledged climate models, is still largely unexploited. Enhancing initial-value predictability through an improved model initialization appears to be a viable option for land surface, sea ice, and, marginally, the stratosphere. Similarly, capturing future aerosol emission storylines might lead to an improved representation of both global and regional short-term climatic changes. In addition to these factors, a key role on the overall predictive ability of ESMs is expected to be played by an accurate representation of processes associated with specific components of the climate system. These act as “signal carriers,” transferring across the climatic phase space the information associated with the initial state and boundary forcings, and dynamically bridging different (otherwise unconnected) subsystems. Through this mechanism, Earth system components trigger low-frequency variability modes, thus extending the predictability beyond the seasonal scale.
Resumo:
During the eruption of Eyjafjallajökull in April and May 2010, the London Volcanic Ash Advisory Centre demonstrated the importance of infrared (IR) satellite imagery for monitoring volcanic ash and validating the Met Office operational model, NAME. This model is used to forecast ash dispersion and forms much of the basis of the advice given to civil aviation. NAME requires a source term describing the properties of the eruption plume at the volcanic source. Elements of the source term are often highly uncertain and significant effort has therefore been invested into the use of satellite observations of ash clouds to constrain them. This paper presents a data insertion method, where satellite observations of downwind ash clouds are used to create effective ‘virtual sources’ far from the vent. Uncertainty in the model output is known to increase over the duration of a model run, as inaccuracies in the source term, meteorological data and the parameterizations of the modelled processes accumulate. This new technique, where the dispersion model (DM) is ‘reinitialized’ part-way through a run, could go some way to addressing this.
Resumo:
Searching for and mapping the physical extent of unmarked graves using geophysical techniques has proven difficult in many cases. The success of individual geophysical techniques for detecting graves depends on a site-by-site basis. Significantly, detection of graves often results from measured contrasts that are linked to the background soils rather than the type of archaeological feature associated with the grave. It is evident that investigation of buried remains should be considered within a 3D space as the variation in burial environment can be extremely varied through the grave. Within this paper, we demonstrate the need for a multi-method survey strategy to investigate unmarked graves, as applied at a “planned” but unmarked pauper’s cemetery. The outcome from this case study provides new insights into the strategy that is required at such sites. Perhaps the most significant conclusion is that unmarked graves are best understood in terms of characterization rather than identification. In this paper, we argue for a methodological approach that, while following the current trends to use multiple techniques, is fundamentally dependent on a structured approach to the analysis of the data. The ramifications of this case study illustrate the necessity of an integrated strategy to provide a more holistic understanding of unmarked graves that may help aid in management of these unseen but important aspects of our heritage. It is concluded that the search for graves is still a current debate and one that will be solved by methodological rather than technique-based arguments.
Resumo:
Julia Wilkinson and a Zooniverse citizen-science team examine Arctic auroral data, using observations from the ill-fated 19th-century Arctic exploration ship USS Jeannette.