917 resultados para Geology|Hydrology


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We unfold a profound relationship between the dynamics of finite-size perturbations in spatially extended chaotic systems and the universality class of Kardar-Parisi-Zhang (KPZ). We show how this relationship can be exploited to obtain a complete theoretical description of the bred vectors dynamics. The existence of characteristic length/time scales, the spatial extent of spatial correlations and how to time it, and the role of the breeding amplitude are all analyzed in the light of our theory. Implications to weather forecasting based on ensembles of initial conditions are also discussed.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is argued that the essential aspect of atmospheric blocking may be seen in the wave breaking of potential temperature (θ) on a potential vorticity (PV) surface, which may be identified with the tropopause, and the consequent reversal of the usual meridional temperature gradient of θ. A new dynamical blocking index is constructed using a meridional θ difference on a PV surface. Unlike in previous studies, the central blocking latitude about which this difference is constructed is allowed to vary with longitude. At each longitude it is determined by the latitude at which the climatological high-pass transient eddy kinetic energy is a maximum. Based on the blocking index, at each longitude local instantaneous blocking, large-scale blocking, and blocking episodes are defined. For longitudinal sectors, sector blocking and sector blocking episodes are also defined. The 5-yr annual climatologies of the three longitudinally defined blocking event frequencies and the seasonal climatologies of blocking episode frequency are shown. The climatologies all pick out the eastern North Atlantic–Europe and eastern North Pacific–western North America regions. There is evidence that Pacific blocking shifts into the western central Pacific in the summer. Sector blocking episodes of 4 days or more are shown to exhibit different persistence characteristics to shorter events, showing that blocking is not just the long timescale tail end of a distribution. The PV–θ index results for the annual average location of Pacific blocking agree with synoptic studies but disagree with modern quantitative height field–based studies. It is considered that the index used here is to be preferred anyway because of its dynamical basis. However, the longitudinal discrepancy is found to be associated with the use in the height field index studies of a central blocking latitude that is independent of longitude. In particular, the use in the North Pacific of a latitude that is suitable for the eastern North Atlantic leads to spurious categorization of blocking there. Furthermore, the PV–θ index is better able to detect Ω blocking than conventional height field indices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The validity of convective parametrization breaks down at the resolution of mesoscale models, and the success of parametrized versus explicit treatments of convection is likely to depend on the large-scale environment. In this paper we examine the hypothesis that a key feature determining the sensitivity to the environment is whether the forcing of convection is sufficiently homogeneous and slowly varying that the convection can be considered to be in equilibrium. Two case studies of mesoscale convective systems over the UK, one where equilibrium conditions are expected and one where equilibrium is unlikely, are simulated using a mesoscale forecasting model. The time evolution of area-average convective available potential energy and the time evolution and magnitude of the timescale of convective adjustment are consistent with the hypothesis of equilibrium for case 1 and non-equilibrium for case 2. For each case, three experiments are performed with different partitionings between parametrized and explicit convection: fully parametrized convection, fully explicit convection and a simulation with significant amounts of both. In the equilibrium case, bulk properties of the convection such as area-integrated rain rates are insensitive to the treatment of convection. However, the detailed structure of the precipitation field changes; the simulation with parametrized convection behaves well and produces a smooth field that follows the forcing region, and the simulation with explicit convection has a small number of localized intense regions of precipitation that track with the mid-levelflow. For the non-equilibrium case, bulk properties of the convection such as area-integrated rain rates are sensitive to the treatment of convection. The simulation with explicit convection behaves similarly to the equilibrium case with a few localized precipitation regions. In contrast, the cumulus parametrization fails dramatically and develops intense propagating bows of precipitation that were not observed. The simulations with both parametrized and explicit convection follow the pattern seen in the other experiments, with a transition over the duration of the run from parametrized to explicit precipitation. The impact of convection on the large-scaleflow, as measured by upper-level wind and potential-vorticity perturbations, is very sensitive to the partitioning of convection for both cases. © Royal Meteorological Society, 2006. Contributions by P. A. Clark and M. E. B. Gray are Crown Copyright.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador: