57 resultados para weighted finite difference approximation scheme
Resumo:
In estimating the inputs into the Modern Portfolio Theory (MPT) portfolio optimisation problem, it is usual to use equal weighted historic data. Equal weighting of the data, however, does not take account of the current state of the market. Consequently this approach is unlikely to perform well in any subsequent period as the data is still reflecting market conditions that are no longer valid. The need for some return-weighting scheme that gives greater weight to the most recent data would seem desirable. Therefore, this study uses returns data which are weighted to give greater weight to the most recent observations to see if such a weighting scheme can offer improved ex-ante performance over that based on un-weighted data.
Resumo:
A three-point difference scheme recently proposed in Ref. 1 for the numerical solution of a class of linear, singularly perturbed, two-point boundary-value problems is investigated. The scheme is derived from a first-order approximation to the original problem with a small deviating argument. It is shown here that, in the limit, as the deviating argument tends to zero, the difference scheme converges to a one-sided approximation to the original singularly perturbed equation in conservation form. The limiting scheme is shown to be stable on any uniform grid. Therefore, no advantage arises from using the deviating argument, and the most accurate and efficient results are obtained with the deviation at its zero limit.
Resumo:
We consider the approximation of solutions of the time-harmonic linear elastic wave equation by linear combinations of plane waves. We prove algebraic orders of convergence both with respect to the dimension of the approximating space and to the diameter of the domain. The error is measured in Sobolev norms and the constants in the estimates explicitly depend on the problem wavenumber. The obtained estimates can be used in the h- and p-convergence analysis of wave-based finite element schemes.
Resumo:
This paper describes the implementation of a 3D variational (3D-Var) data assimilation scheme for a morphodynamic model applied to Morecambe Bay, UK. A simple decoupled hydrodynamic and sediment transport model is combined with a data assimilation scheme to investigate the ability of such methods to improve the accuracy of the predicted bathymetry. The inverse forecast error covariance matrix is modelled using a Laplacian approximation which is calibrated for the length scale parameter required. Calibration is also performed for the Soulsby-van Rijn sediment transport equations. The data used for assimilation purposes comprises waterlines derived from SAR imagery covering the entire period of the model run, and swath bathymetry data collected by a ship-borne survey for one date towards the end of the model run. A LiDAR survey of the entire bay carried out in November 2005 is used for validation purposes. The comparison of the predictive ability of the model alone with the model-forecast-assimilation system demonstrates that using data assimilation significantly improves the forecast skill. An investigation of the assimilation of the swath bathymetry as well as the waterlines demonstrates that the overall improvement is initially large, but decreases over time as the bathymetry evolves away from that observed by the survey. The result of combining the calibration runs into a pseudo-ensemble provides a higher skill score than for a single optimized model run. A brief comparison of the Optimal Interpolation assimilation method with the 3D-Var method shows that the two schemes give similar results.
Resumo:
We consider the Dirichlet and Robin boundary value problems for the Helmholtz equation in a non-locally perturbed half-plane, modelling time harmonic acoustic scattering of an incident field by, respectively, sound-soft and impedance infinite rough surfaces.Recently proposed novel boundary integral equation formulations of these problems are discussed. It is usual in practical computations to truncate the infinite rough surface, solving a boundary integral equation on a finite section of the boundary, of length 2A, say. In the case of surfaces of small amplitude and slope we prove the stability and convergence as A→∞ of this approximation procedure. For surfaces of arbitrarily large amplitude and/or surface slope we prove stability and convergence of a modified finite section procedure in which the truncated boundary is ‘flattened’ in finite neighbourhoods of its two endpoints. Copyright © 2001 John Wiley & Sons, Ltd.
First order k-th moment finite element analysis of nonlinear operator equations with stochastic data
Resumo:
We develop and analyze a class of efficient Galerkin approximation methods for uncertainty quantification of nonlinear operator equations. The algorithms are based on sparse Galerkin discretizations of tensorized linearizations at nominal parameters. Specifically, we consider abstract, nonlinear, parametric operator equations J(\alpha ,u)=0 for random input \alpha (\omega ) with almost sure realizations in a neighborhood of a nominal input parameter \alpha _0. Under some structural assumptions on the parameter dependence, we prove existence and uniqueness of a random solution, u(\omega ) = S(\alpha (\omega )). We derive a multilinear, tensorized operator equation for the deterministic computation of k-th order statistical moments of the random solution's fluctuations u(\omega ) - S(\alpha _0). We introduce and analyse sparse tensor Galerkin discretization schemes for the efficient, deterministic computation of the k-th statistical moment equation. We prove a shift theorem for the k-point correlation equation in anisotropic smoothness scales and deduce that sparse tensor Galerkin discretizations of this equation converge in accuracy vs. complexity which equals, up to logarithmic terms, that of the Galerkin discretization of a single instance of the mean field problem. We illustrate the abstract theory for nonstationary diffusion problems in random domains.
Resumo:
We present a Galerkin method with piecewise polynomial continuous elements for fully nonlinear elliptic equations. A key tool is the discretization proposed in Lakkis and Pryer, 2011, allowing us to work directly on the strong form of a linear PDE. An added benefit to making use of this discretization method is that a recovered (finite element) Hessian is a byproduct of the solution process. We build on the linear method and ultimately construct two different methodologies for the solution of second order fully nonlinear PDEs. Benchmark numerical results illustrate the convergence properties of the scheme for some test problems as well as the Monge–Amp`ere equation and the Pucci equation.
Resumo:
The Hadley Centre Global Environmental Model (HadGEM) includes two aerosol schemes: the Coupled Large-scale Aerosol Simulator for Studies in Climate (CLASSIC), and the new Global Model of Aerosol Processes (GLOMAP-mode). GLOMAP-mode is a modal aerosol microphysics scheme that simulates not only aerosol mass but also aerosol number, represents internally-mixed particles, and includes aerosol microphysical processes such as nucleation. In this study, both schemes provide hindcast simulations of natural and anthropogenic aerosol species for the period 2000–2006. HadGEM simulations of the aerosol optical depth using GLOMAP-mode compare better than CLASSIC against a data-assimilated aerosol re-analysis and aerosol ground-based observations. Because of differences in wet deposition rates, GLOMAP-mode sulphate aerosol residence time is two days longer than CLASSIC sulphate aerosols, whereas black carbon residence time is much shorter. As a result, CLASSIC underestimates aerosol optical depths in continental regions of the Northern Hemisphere and likely overestimates absorption in remote regions. Aerosol direct and first indirect radiative forcings are computed from simulations of aerosols with emissions for the year 1850 and 2000. In 1850, GLOMAP-mode predicts lower aerosol optical depths and higher cloud droplet number concentrations than CLASSIC. Consequently, simulated clouds are much less susceptible to natural and anthropogenic aerosol changes when the microphysical scheme is used. In particular, the response of cloud condensation nuclei to an increase in dimethyl sulphide emissions becomes a factor of four smaller. The combined effect of different 1850 baselines, residence times, and abilities to affect cloud droplet number, leads to substantial differences in the aerosol forcings simulated by the two schemes. GLOMAP-mode finds a presentday direct aerosol forcing of −0.49Wm−2 on a global average, 72% stronger than the corresponding forcing from CLASSIC. This difference is compensated by changes in first indirect aerosol forcing: the forcing of −1.17Wm−2 obtained with GLOMAP-mode is 20% weaker than with CLASSIC. Results suggest that mass-based schemes such as CLASSIC lack the necessary sophistication to provide realistic input to aerosol-cloud interaction schemes. Furthermore, the importance of the 1850 baseline highlights how model skill in predicting present-day aerosol does not guarantee reliable forcing estimates. Those findings suggest that the more complex representation of aerosol processes in microphysical schemes improves the fidelity of simulated aerosol forcings.
Resumo:
We are looking into variants of a domination set problem in social networks. While randomised algorithms for solving the minimum weighted domination set problem and the minimum alpha and alpha-rate domination problem on simple graphs are already present in the literature, we propose here a randomised algorithm for the minimum weighted alpha-rate domination set problem which is, to the best of our knowledge, the first such algorithm. A theoretical approximation bound based on a simple randomised rounding technique is given. The algorithm is implemented in Python and applied to a UK Twitter mentions networks using a measure of individuals’ influence (klout) as weights. We argue that the weights of vertices could be interpreted as the costs of getting those individuals on board for a campaign or a behaviour change intervention. The minimum weighted alpha-rate dominating set problem can therefore be seen as finding a set that minimises the total cost and each individual in a network has at least alpha percentage of its neighbours in the chosen set. We also test our algorithm on generated graphs with several thousand vertices and edges. Our results on this real-life Twitter networks and generated graphs show that the implementation is reasonably efficient and thus can be used for real-life applications when creating social network based interventions, designing social media campaigns and potentially improving users’ social media experience.
Resumo:
The Monte Carlo Independent Column Approximation (McICA) is a flexible method for representing subgrid-scale cloud inhomogeneity in radiative transfer schemes. It does, however, introduce conditional random errors but these have been shown to have little effect on climate simulations, where spatial and temporal scales of interest are large enough for effects of noise to be averaged out. This article considers the effect of McICA noise on a numerical weather prediction (NWP) model, where the time and spatial scales of interest are much closer to those at which the errors manifest themselves; this, as we show, means that noise is more significant. We suggest methods for efficiently reducing the magnitude of McICA noise and test these methods in a global NWP version of the UK Met Office Unified Model (MetUM). The resultant errors are put into context by comparison with errors due to the widely used assumption of maximum-random-overlap of plane-parallel homogeneous cloud. For a simple implementation of the McICA scheme, forecasts of near-surface temperature are found to be worse than those obtained using the plane-parallel, maximum-random-overlap representation of clouds. However, by applying the methods suggested in this article, we can reduce noise enough to give forecasts of near-surface temperature that are an improvement on the plane-parallel maximum-random-overlap forecasts. We conclude that the McICA scheme can be used to improve the representation of clouds in NWP models, with the provision that the associated noise is sufficiently small.
Resumo:
We design consistent discontinuous Galerkin finite element schemes for the approximation of the Euler-Korteweg and the Navier-Stokes-Korteweg systems. We show that the scheme for the Euler-Korteweg system is energy and mass conservative and that the scheme for the Navier-Stokes-Korteweg system is mass conservative and monotonically energy dissipative. In this case the dissipation is isolated to viscous effects, that is, there is no numerical dissipation. In this sense the methods are consistent with the energy dissipation of the continuous PDE systems. - See more at: http://www.ams.org/journals/mcom/2014-83-289/S0025-5718-2014-02792-0/home.html#sthash.rwTIhNWi.dpuf
Resumo:
We design consistent discontinuous Galerkin finite element schemes for the approximation of a quasi-incompressible two phase flow model of Allen–Cahn/Cahn–Hilliard/Navier–Stokes–Korteweg type which allows for phase transitions. We show that the scheme is mass conservative and monotonically energy dissipative. In this case the dissipation is isolated to discrete equivalents of those effects already causing dissipation on the continuous level, that is, there is no artificial numerical dissipation added into the scheme. In this sense the methods are consistent with the energy dissipation of the continuous PDE system.