80 resultados para weed Euphorbiaceae
Resumo:
Dormancy is an adaptive trait in seed populations that helps ensure that seed germination is distributed over time and occurs in environmental conditions suitable for seedling growth. Several genes.. associated with seed dormancy in various plant species, have been integrated into a hypothetical dormancy model for Avena fatua L. (wild oats). Generally, the synthesis of, and sensitivity to, abscisic acid (ABA) during imbibition determines whether genes similar to those during maturation are expressed leading to a maintenance of dormancy during extended imbibition. Alternatively, there may be a shift towards expression of genes associated with gibberellins leading to germination. Environmental factors during maturation, after-ripening and imbibition are likely to interact with the genotype to affect gene expression and hence whether or not a seed germinates. In spite of the difficulties of working on a hexaploid species, A. fatua was selected for study because of its worldwide importance as a weed. Dormant and non-dormant genotypes of this species were also available. Gene expression studies are being carried out on three A.fatua genotypes produced tinder different environmental conditions to investigate the role of specific genes in dormancy and genotype X environment interactions in relation to dormancy.
Resumo:
Three experiments conducted over two years (2002-04) at the Crops Research Unit, University of Reading, investigated competition between autumn sown oilseed rape cultivars (Brassica napus L. ssp. oleifera var. biennis (DC.) Metzg.) and Lolium multiflorum Lam., L. x boucheanum Kunth and Alopecurus myosuroides Huds., sown as indicative grass weeds. Rape cultivar (cv.) had a substantial effect on grass weed seed return. Over the six cultivars tested, L. multiflorum spikelet production ranged from just under 400 spikelets/m(2) in the presence of cv. Winner to nearly 5800 in competition with cv. Lutin. Cultivar competitiveness was associated with high biomass, large dense floral layers and early stem extension. There was some evidence of differential competitive tolerance between rape cultivars. The results suggested that rape cultivars could be screened for competitiveness by measuring floral layer interception of photosynthetic active radiation. L. x boucheanum cultivars varied in ability to compete with rape. In the absence of inter-specific competition, spikelet density was similar for Aberecho and Polly (circa 31000 spikelets/m(2)) but when grown with rape Polly outyielded Aberecho (i.e. 12 090 and 7990 spikelets/m(2) respectively).
Resumo:
As a result of the recent intensification of crop production, the abundance and diversity of UK arable weeds adapted to cultivated land have declined, with an associated reduction in farmland birds. A number of questions need to be addressed when considering how these declines can be reversed. Firstly, can the delivery of crop production and biodiversity be reconciled by spatially separating cropping from designated wildlife areas? A number of subsidised environmental schemes in the UK take this approach and are focused on establishing vegetation cover on uncropped land. However, because of the lack of regular disturbance in these habitats, they are dominated by perennials and they therefore have limited potential for promoting the recovery of annual weed populations. A number of farmland bird species also rely on the provision of resources in field centres, and it is therefore likely that the recovery of their populations will rely on weed management options targeted at the cropped areas of the field. This raises two further questions. Firstly, is it possible to identify beneficial weed species that are relatively poor competitors with the crop and also have biodiversity value? Secondly, are the tools available to manage these species at acceptable levels while controlling pernicious weeds? A number of approaches are being employed to answer these questions, including predicting yield loss from weed competition models and exploiting herbicide selectivity. The further development of these tools is crucial if farmer opposition to managing weeds in crops is to be overcome. (c) 2007 Society of Chemical Industry.
Resumo:
Buffer strips are refuges for a variety of plants providing resources, such as pollen, nectar and seeds, for higher trophic levels, including invertebrates, mammals and birds. Margins can also harbour plant species that are potentially injurious to the adjacent arable crop (undesirable species). Sowing perennial species in non-cropped buffer strips can reduce weed incidence, but limits the abundance of annuals with the potential to support wider biodiversity (desirable species). We investigated the responses of unsown plant species present in buffer strips established with three different seed mixes managed annually with three contrasting management regimes (cutting, sward scarification and selective graminicide). Sward scarification had the strongest influence on the unsown desirable (e.g. Sonchus spp.) and unsown pernicious (e.g. Elytrigia repens) species, and was generally associated with higher cover values of these species. However, abundances of several desirable weed species, in particular Poa annua, were not promoted by scarification. The treatments of cutting and graminicide tended to have negative impacts on the unsown species, except for Cirsium vulgare, which increased with graminicide application. Differences in unsown species cover between seed mixes were minimal, although the grass-only mix was more susceptible to establishment by C. vulgare and Galium aparine than the two grass and forb mixes. Annual scarification can enable desirable annuals and sown perennials to co-exist, however, this practice can also promote pernicious species, and so is unlikely to be widely adopted as a management tool in its current form.
Resumo:
With uncertainty concerning the future of set-aside, over-wintering stubble is an attractive management option within the agri-environment scheme. Over-wintering stubbles could be included as part of rotational set-aside, benefiting farmland biodiversity. However, there is little research on managing stubbles to maximise weed seed loss, so farmers may be reluctant to adopt this option for fear of increased weed infestation. The purpose of this investigation is to develop effective management of over-wintering stubbles to minimise pernicious grass weeds in sequential crops, whilst maintaining beneficial species diversity. Research has focused on four annual grass-weeds (Alopecurus myosuroides, Anisantha sterilis, Bromus commutatus and Lolium multiflorum) of increased occurrence and/or resistance to herbicides. Hitherto, work has concentrated on the effects of stubble manipulation on weed seed germination and mortality, in particular by straw spreading or removal after harvest. The dynamics of artificially inoculated weed populations were monitored from harvest until early spring. Results obtained indicate that where straw is retained on the soil surface, it provides a favourable microclimate for seed depletion of Anisantha sterilis and Bromus commutatus through germination. Conversely, greater depletion of Alopecurus myosuroides and Lolium multiflorum seed occurred from stubbles in which a straw layer was absent. Seed recovery work provided evidence that most seeds remaining ungerminated throughout the trial period were still viable, but a large proportion of the seeds sown were unaccounted for. As these species are not generally favoured as a food source, the as yet unknown fate of these seeds has implications for subsequent grass-weed infestations.
Resumo:
Four experiments conducted over three seasons (2002–05) at the Crops Research Unit, University of Reading, investigated effects of canopy management of autumn sown oilseed rape (Brassica napus L. ssp. oleifera var. biennis (DC.) Metzg.) on competition with grass weeds. Emphasis was placed on the effect of the crop on the weeds. Rape canopy size was manipulated using sowing date, seed rate and the application of autumn fertilizer. Lolium multiflorum Lam., L.rboucheanum Kunth and Alopecurus myosuroides Huds. were sown as indicative grass weeds. The effects of sowing date, seed rate and autumn nitrogen on crop competitive ability were correlated with rape biomass and fractional interception of photosynthetically active radiation (PAR) by the rape floral layer, to the extent that by spring there was good evidence of crop: weed replacement. An increase in seed rate up to the highest plant densities tested increased both rape biomass and competitiveness, e.g. in 2002/3, L. multiflorum head density was reduced from 539 to 245 heads/m2 and spikelet density from 13 170 to 5960 spikelets/m2 when rape plant density was increased from 16 to 81 plants/m2. Spikelets/head of Lolium spp. was little affected by rape seed rate, but the length of heads of A. myosuroides was reduced by 9%when plant density was increased from 29–51 plants/m2. Autumn nitrogen increased rape biomass and reduced L. multiflorum head density (415 and 336 heads/m2 without and with autumn nitrogen, respectively) and spikelet density (9990 and 8220 spikelets/m2 without and with autumn nitrogen, respectively). The number of spikelets/head was not significantly affected by autumn nitrogen. Early sowing could increase biomass and competitiveness, but poor crop establishment sometimes overrode the effect. Where crop and weed establishment was similar for both sowing dates, a 2-week delay (i.e. early September to mid-September) increased L. multiflorum head density from 226 to 633 heads/m2 and spikelet density from 5780 to 15 060 spikelets/m2.
Resumo:
Three experiments conducted over two years (2002-04) at the Crops Research Unit, University of Reading, investigated competition between autumn sown oilseed rape cultivars (Brassica napus L. ssp. oleifera var. biennis (DC.) Metzg.) and Lolium multiflorum Lam., L. x boucheanum Kunth and Alopecurus myosuroides Huds., sown as indicative grass weeds. Rape cultivar (cv.) had a substantial effect on grass weed seed return. Over the six cultivars tested, L. multiflorum spikelet production ranged from just under 400 spikelets/m(2) in the presence of cv. Winner to nearly 5800 in competition with cv. Lutin. Cultivar competitiveness was associated with high biomass, large dense floral layers and early stem extension. There was some evidence of differential competitive tolerance between rape cultivars. The results suggested that rape cultivars could be screened for competitiveness by measuring floral layer interception of photosynthetic active radiation. L. x boucheanum cultivars varied in ability to compete with rape. In the absence of inter-specific competition, spikelet density was similar for Aberecho and Polly (circa 31000 spikelets/m(2)) but when grown with rape Polly outyielded Aberecho (i.e. 12 090 and 7990 spikelets/m(2) respectively).
Resumo:
Field experiments were conducted to quantify the natural levels of post-dispersal seed predation of arable weed species in spring barley and to identify the main groups of seed predators. Four arable weed species were investigated that were of high biodiversity value, yet of low to moderate competitive ability with the crop. These were Chenopodium album, Sinapis arvensis, Stellaria media and Polygonum aviculare. Exclusion treatments were used to allow selective access to dishes of seeds by different predator groups. Seed predation was highest early in the season, followed by a gradual decline in predation over the summer for all species. All species were taken by invertebrates. The activity of two phytophagous carabid genera showed significant correlations with seed predation levels. However, in general carabid activity was not related to seed predation and this is discussed in terms of the mainly polyphagous nature of many Carabid species that utilized the seed resource early in the season, but then switched to carnivory as prey populations increased. The potential relevance of post-dispersal seed predation to the development of weed management systems that maximize biological control through conservation and optimize herbicide use, is discussed.
Resumo:
In previous empirical and modelling studies of rare species and weeds, evidence of fractal behaviour has been found. We propose that weeds in modern agricultural systems may be managed close to critical population dynamic thresholds, below which their rates of increase will be negative and where scale-invariance may be expected as a consequence. We collected detailed spatial data on five contrasting species over a period of three years in a primarily arable field. Counts in 20×20 cm contiguous quadrats, 225,000 in 1998 and 84,375 thereafter, could be re-structured into a wide range of larger quadrat sizes. These were analysed using three methods based on correlation sum, incidence and conditional incidence. We found non-trivial scale invariance for species occurring at low mean densities and where they were strongly aggregated. The fact that the scale-invariance was not found for widespread species occurring at higher densities suggests that the scaling in agricultural weed populations may, indeed, be related to critical phenomena.
Resumo:
Dose–response experiments were conducted in glasshouse pot experiments to investigate the selectivity of oxadiargyl, a recently introduced herbicide, in direct-seeded rice under both aerobic and anaerobic conditions. Crop sensitivity to oxadiargyl was comparatively greater for wet-seeded (anaerobic) than for dry-seeded rice (aerobic). Likewise, greater efficacy against Echinochloa crus-galli (L.) was also observed under anaerobic conditions. These results indicate greater activity of oxadiargyl under anaerobic conditions, but that application pre-sowing with subsequent flooding would reduce selectivity in wet-seeded rice. The results are discussed in relation to rice production in Mediterranean agriculture.
Resumo:
Although adult Rumex obtusifolius are problematic weeds, their seedlings are poor competitors against Lolium perenne, particularly in established swards. We investigated the possibility of using this weakness to augment control of R. obtusifolius seedlings with combinations of Gastrophysa viridula (Coleoptera: Chrysomelidae) and the rust fungus Uromyces rumicis. Rumex obtusifolius seedlings were grown in competition with L. perenne sown at different rates and times after R. obtusifolius: they competed successfully with L. perenne when sown 21 days before the grass. Sowing both species at the same time resulted in a dominant grass sward, with R. obtusifolius becoming dominant when sown 42 days prior to L. perenne. Grass sowing rate had no effect on R. obtusifolius growth or biomass. A second experiment investigated how competition from L. perenne sown 21 days after R. obtusifolius combined with damage from G. viridula and/or U. rumicis (applied at either the 3-4- or 10-13-leaf stage, or at both stages) affected the growth and final biomass of R. obtusifolius. Beetle grazing at the latter leaf stage was the only treatment that reduced R. obtusifolius biomass, although rust infection at the earlier application led to an increase in shoot and root weight. The results are discussed in terms of the potential for use of these agents in the field.
Resumo:
The iron oxyallyl carbocation generated from 2,7-dibromocycloheptanone was induced to undergo [4 + 3] cycloaddition reactions with various furans, affording a series of 12-oxatricyclo-[4.4.1.1(2,5)]-dodec-3-en-11-one adducts. Similar methodology was used to prepare two additional cycloadducts using menthofuran and two homologous aliphatic dibromoketones. Dipolar cycloaddition of ozone to the adducts afforded the corresponding secondary ozonides (i.e., 1,2,4-trioxolanes) in variable yields. Ozonides were investigated by quantum mechanics at the B3LYP/6-31+G* level to study structural features including close contacts which may be responsible for enhancing ozonide stability. The effect of these ozonides and their corresponding precursor cycloadducts upon radicle growth of both Sorghum bicolor and Cucumis sativus was evaluated at 5.0 x 10(-4) mol L-1. The most active cycloadducts and ozonides were also evaluated against the weed species Ipomoea grandifolia and Brachiaria decumbens, and the results are discussed. Compared to ozonides previously synthesized in our laboratory, the new ozonides described herein present improved plant growth regulatory activity.
Resumo:
Near isogenic lines (NILs) varying for reduced height (Rht) and photoperiod insensitivity (Ppd-D1) alleles in a cv. Mercia background (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) were compared for interception of photosynthetically active radiation (PAR), radiation use efficiency (RUE), above-ground biomass (AGB), harvest index (HI), height, weed prevalence, lodging and grain yield, at one field site but within contrasting (‘organic’ v ‘conventional’) rotational and agronomic contexts, in each of three years. In the final year, further NILs (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-B1b+Rht-D1b, Rht-D1b+Rht-B1c) in Maris Huntsman and Maris Widgeon backgrounds were added together with 64 lines of a doubled haploid (DH) population [Savannah (Rht-D1b) × Renesansa (Rht-8c+Ppd-D1a)]. There were highly significant genotype × system interactions for grain yield, mostly because differences were greater in the conventional system than in the organic system. Quadratic fits of NIL grain yield against height were appropriate for both systems when all NILs and years were included. Extreme dwarfing was associated with reduced PAR, RUE, AGB, HI, and increased weed prevalence. Intermediate dwarfing was often associated with improved HI in the conventional system, but not in the organic system. Heights in excess of the optimum for yield were associated particularly with reduced HI and, in the conventional system, lodging. There was no statistical evidence that optimum height for grain yield varied with system although fits peaked at 85cm and 96cm in the conventional and organic systems, respectively. Amongst the DH lines, the marker for Ppd-D1a was associated with earlier flowering, and just in the conventional system also with reduced PAR, AGB and grain yield. The marker for Rht-D1b was associated with reduced height, and again just in the conventional system, with increased HI and grain yield. The marker for Rht8c reduced height, and in the conventional system only, increased HI. When using the System × DH line means as observations grain yield was associated with height and early vegetative growth in the organic system, but not in the conventional system. In the conventional system, PAR interception after anthesis correlated with yield. Savannah was the highest yielding line in the conventional system, producing significantly more grain than several lines that out yielded it in the organic system.
Resumo:
The project investigated whether it would be possible to remove the main technical hindrance to precision application of herbicides to arable crops in the UK, namely creating geo-referenced weed maps for each field. The ultimate goal is an information system so that agronomists and farmers can plan precision weed control and create spraying maps. The project focussed on black-grass in wheat, but research was also carried out on barley and beans and on wild-oats, barren brome, rye-grass, cleavers and thistles which form stable patches in arable fields. Farmers may also make special efforts to control them. Using cameras mounted on farm machinery, the project explored the feasibility of automating the process of mapping black-grass in fields. Geo-referenced images were captured from June to December 2009, using sprayers, a tractor, combine harvesters and on foot. Cameras were mounted on the sprayer boom, on windows or on top of tractor and combine cabs and images were captured with a range of vibration levels and at speeds up to 20 km h-1. For acceptability to farmers, it was important that every image containing black-grass was classified as containing black-grass; false negatives are highly undesirable. The software algorithms recorded no false negatives in sample images analysed to date, although some black-grass heads were unclassified and there were also false positives. The density of black-grass heads per unit area estimated by machine vision increased as a linear function of the actual density with a mean detection rate of 47% of black-grass heads in sample images at T3 within a density range of 13 to 1230 heads m-2. A final part of the project was to create geo-referenced weed maps using software written in previous HGCA-funded projects and two examples show that geo-location by machine vision compares well with manually-mapped weed patches. The consortium therefore demonstrated for the first time the feasibility of using a GPS-linked computer-controlled camera system mounted on farm machinery (tractor, sprayer or combine) to geo-reference black-grass in winter wheat between black-grass head emergence and seed shedding.