73 resultados para virulence markers
Resumo:
Three Salmonella enterica serovar Orion var. 15+ isolates of distinct provenance were tested for survival in various stress assays. All were less able to survive desiccation than a virulent S. Enreritidis strain, with levels of survival similar to a rpoS mutant of the S. Enteritidis strain, whereas one isolate (F3720) was significantly more acid tolerant. The S. Orion var. 15+ isolates were motile by flagellae and elaborated type-1 and curli-like fimbriae; surface organelles that are considered virulence determinants in Salmonella pathogenesis. Each adhered and invaded HEp-2 tissue culture cells with similar proficiency to the S. Enteritidis control but were significantly less virulent than S. En teritidis in the one-day-old and seven-day-old chick model. Given an oral dose of 1 x 10(3) cfu to one-day-old chicken, S. Orion var. 15+ isolates colonised 25% of liver and spleens examined at 24 h whereas S. Enteritidis colonised 100% of organs by the same with the same dose. Given an oral dose of 1 x 10(7) cfu at seven-day old, S. Orion var. 15+ failed to colonise livers and spleens in any bird examined at 24 h whereas S. Enteritidis colonised 50% of organs by the same with the same dose. Based on the number of internal organs colonised, one of the three S. Orion var. 15+ isolates tested (strain F3720) was significantly more invasive than the other two (B1 and B7). Also, strain F3720 was shed less than either B1 or B7 supporting the concept that there may be an inverse relationship between the ability to colonise deep tissues and to persist in the gut. These data are discussed in the light that S. Orion var. 15+ is associated with sporadic outbreaks of human infection rather than epidemics.
Resumo:
The virulence of a Salmonella enterica serovar Typhimurium DT014 strain in which marA was insertionally inactivated was compared to its isogenic parent in vitro and in vivo. In vitro, the numbers of the marA mutant phagocytosed by porcine lung macrophages were significantly increased, while survival at 24 h inside macrophages and adherence to human gut cells were significantly reduced in comparison with the parent strain. In vivo, the marA inactivated strain, in competition with its parent strain, persisted for a shorter period in chickens, was present in the caeca at significantly lower levels and invaded the deeper organs to a significantly lesser extent. Therapeutic antibiotic treatment of one group of chickens with oxytetracycline favoured the persistence of both the parent strain and, to a lesser extent, the marA inactivated strain; but interestingly, increased tetracycline resistance of Salmonella isolates after treatment of birds with antibiotic was seen only for the parent strain. Further work is needed to elucidate how mar is involved in virulence and if its inactivation can minimise the ability of bacteria to become antibiotic-resistant in vivo.
Resumo:
Attaching and effacing (AE) lesions were observed in the caecum, proximal colon and rectum of one of four lambs experimentally inoculated at 6 weeks. of age with Escherichia coli O157:H7. However, the attached bacteria did not immunostain with O157-specific antiserum. Subsequent bacteriological analysis of samples from this animal yielded two E. coli O115:H- strains, one from the colon (CO) and one from the rectum (RC), and those bacteria forming the AE lesions were shown to be of the O115 serogroup by immunostaining. The O115:H(-)isolates formed microcolonies and attaching and effacing lesions, as demonstrated by the fluorescence actin staining test, on HEp-2 tissue culture cells. Both isolates were confirmed by PCR to encode the epsilon (epsilon) subtype of intimin. Supernates of both O115:H- isolates induced cytopathic effects on Vero cell monolayers, and PCR analysis verified that both isolates encoded EAST1, CNF1 and CNF2 toxins but not Shiga-like toxins. Both isolates harboured similar sized plasmids but-PCR analysis indicated that only one of the O115:H- isolates (CO) possessed the plasmid-associated virulence determinants ehxA and etpD. Neither strain possessed the espP, katP or bfpA plasmid-associated virulence determinants. These E. coli O115:H- strains exhibited a novel combination of virulence determinants and are the first isolates found to possess both CNF1 and CNF2.
Resumo:
The current understanding of the pathogenesis of avian pathogenic Escherichia coli (APEC) in colisepticaemia is limited. This review discusses putative virulence determinants per se, such as a number of surface organelles including fimbriae and flagella; together with other factors such as iron sequestering mechanisms, which are involved in the survival of E. coli in the host rather than initiation of infection. It is concluded that avian colisepticaemia is a multi-factorial disease and that to date only a limited number of virulence factors of APEC have been thoroughly elucidated. Crown Copyright (C) 2002 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The CpxAR (Cpx) two-component regulator controls the expression of genes in response to a variety of environmental cues. The Cpx regulator has been implicated in the virulence of several gram-negative pathogens, although a role for Cpx in vivo has not been demonstrated directly. Here we investigate whether positive or negative control of gene expression by Cpx is important for the pathogenesis of Salmonella enterica serotype Typhimurium. The Cpx signal pathway in serotype Typhimurium was disrupted by insertional inactivation of the cpxA and cpxR genes. We also constitutively activated the Cpx pathway by making an internal in-frame deletion in cpxA (a cpxA* mutation). Activation of the Cpx pathway inhibited induction of the envelope stress response pathway controlled by the alternative sigma factor sigma(E) (encoded by rpoE). Conversely, the Cpx pathway was highly up-regulated (>40-fold) in a serotype Typhimurium rpoE mutant. The cpxA* mutation, but not the cpxA or the cpxR mutation, significantly reduced the capacity of serotype Typhimurium to adhere to and invade eucaryotic cells, although intracellular replication was not affected. The cpxA and cpxA* mutations significantly impaired the ability of serotype Typhimurium to grow in vivo in mice. To our knowledge, this is the first demonstration that the Cpx system is important for a bacterial pathogen in vivo.
Resumo:
The influence of geographical origin, host animal and presence of the stx gene on the virulence of Escherichia coli O26 strains from ruminants was determined in this study. A clear association was found between the virulence profile and geographical origin of Shiga-toxigenic E. coli (STEC) O26 strains, with UK STEC O26 strains harbouring virtually identical profiles, whilst central European strains showed considerable heterogeneity in plasmid-encoded genes. The former group were also more likely to be non-motile and katP gene positive. Comparison of UK STEC and atypical enteropathogenic E. coli (aEPEC O26 strains showed that the presence of the stx1 gene was positively correlated with the presence of espP and katP genes and negatively associated with the presence of the yagP-yagT region and with rhamnose fermentation. In contrast to the uniform profiles of STEC O26 strains from ruminants in the UK, aEPEC O26 strains of bovine and ovine origin showed diverse profiles both within and between groups, and could not be separated into discrete groups. These results indicate that the characteristics of UK O26 strains from ruminants are distinct from those of O26 strains from ruminants and humans in other regions in central Europe. Such differences are expected to influence the zoonotic potential of this pathogen and the subsequent incidence of O26-associated human disease.
Resumo:
Objectives: To determine if one passage of Salmonella enterica serovar Typhimurium in the presence of farm disinfectants selected for mutants with decreased susceptibility to disinfectants and/or antibiotics. Methods: Eight Salmonella Typhimurium strains including field isolates and laboratory mutants were exposed to either a tar oil phenol (PFD) disinfectant, an oxidizing compound disinfectant (OXC), an aldehyde based disinfectant (ABD) or a dairy sterilizer disinfectant (based on quaternary ammonium biocide) in agar. The susceptibility of mutants obtained after disinfectant exposure to antibiotics and disinfectants was determined as was the accumulation of norfloxacin. The proteome of SL1344 after exposure to PFD and OXC was analysed using two-dimensional liquid chromatography mass spectrometry. Results: Strains with either acrB or tolC inactivated were more susceptible to most disinfectants than other strains. The majority (3/5) of mutants recovered after disinfectant exposure required statistically significantly longer exposure times to disinfectants than their parent strains to generate a 5 log kill. Small decreases in antibiotic susceptibility were observed but no mutants were multiply antibiotic-resistant (MAR). Notably exposure to ABD decreased susceptibility to ciprofloxacin in some strains. Mutants with increased disinfectant tolerance were able to survive and persist in chicks as well as in parent strains. Analysis of proteomes revealed significantly increased expression of the AcrAB-TolC efflux system after PFD exposure. Conclusions: Data presented demonstrate that efflux pumps are required for intrinsic resistance to some disinfectants and that exposure to disinfectants can induce expression of the AcrAB-TolC efflux system, but that single exposure was insufficient to select for MAR strains.
Resumo:
Metabolic syndrome is a set of disorders that increases the risk of developing cardiovascular disease. The gut microbiota is altered toward a less beneficial composition in overweight adults and this change can be accompanied by inflammation. Prebiotics such as galactooligosaccharides can positively modify the gut microbiota and immune system; some may also reduce blood lipids. We assessed the effect of a galactooligosaccharide mixture [Bi2 muno (B-GOS)] on markers of metabolic syndrome, gut microbiota, and immune function in 45 overweight adults with $3 risk factors associated with metabolic syndrome in a double-blind, randomized, placebo (maltodextrin)-controlled, crossover study (with a 4-wk wash-out period between interventions). Whole blood, saliva, feces, and anthropometric measurements were taken at the beginning, wk 6, and end of each 12-wk intervention period. Predominant groups of fecal bacteria were quantified and full blood count, markers of inflammation and lipid metabolism, insulin, and glucose were measured. B-GOS increased the number of fecal bifidobacteria at the expense of less desirable groups of bacteria. Increases in fecal secretory IgA and decreases in fecal calprotectin, plasma C-reactive protein, insulin, total cholesterol (TC), TG, and the TC:HDL cholesterol ratio were also observed. Administration of B-GOS to overweight adults resulted in positive effects on the composition of the gut microbiota, the immune response, and insulin, TC, and TG concentrations. B-GOSmay be a useful candidate for the enhancement of gastrointestinal health, immune function, and the reduction of metabolic syndrome risk factors in overweight adults.
Resumo:
The deployment of genetic markers is of interest in crop assessment and breeding programmes, due to the potential savings in cost and time afforded. As part of the internationally recognised framework for the awarding of Plant Breeders’ Rights (PBR), new barley variety submissions are evaluated using a suite of morphological traits to ensure they are distinct, uniform and stable (DUS) in comparison to all previous submissions. Increasing knowledge of the genetic control of many of these traits provides the opportunity to assess the potential of deploying diagnostic/perfect genetic markers in place of phenotypic assessment. Here, we identify a suite of 25 genetic markers assaying for 14 DUS traits, and implement them using a single genotyping platform (KASPar). Using a panel of 169 UK barley varieties, we show that phenotypic state at three of these traits can be perfectly predicted by genotype. Predictive values for an additional nine traits ranged from 81 to 99 %. Finally, by comparison of varietal discrimination based on phenotype and genotype resulted in correlation of 0.72, indicating that deployment of molecular markers for varietal discrimination could be feasible in the near future. Due to the flexibility of the genotyping platform used, the genetic markers described here can be used in any number or combination, in-house or by outsourcing, allowing flexible deployment by users. These markers are likely to find application where tracking of specific alleles is required in breeding programmes, or for potential use within national assessment programmes for the awarding of PBRs.
Resumo:
Toward the ultimate goal of replacing field-based evaluation of seasonal growth habit, we describe the design and validation of a multiplex polymerase chain reaction assay diagnostic for allelic status at the barley (Hordeum vulgare ssp. vulgare L.) vernalization locus, VRN-H1 By assaying for the presence of all known insertion–deletion polymorphisms thought to be responsible for the difference between spring and winter alleles, this assay directly tests for the presence of functional polymorphism at VRN-H1 Four of the nine previously recognized VRN-H1 haplotypes (including both winter alleles) give unique profiles using this assay. The remaining five spring haplotypes share a single profile, indicative of function-altering deletions spanning, or adjacent to, the putative “vernalization critical” region of intron 1. When used in conjunction with a previously published PCR-based assay diagnostic for alleles at VRN-H2, it was possible to predict growth habit in all the 100 contemporary UK spring and winter lines analyzed in this study. This assay is likely to find application in instances when seasonal growth habit needs to be determined without the time and cost of phenotypic assessment and during marker-assisted selection using conventional and multicross population analysis.
Resumo:
A deeper understanding of random markers is important if they are to be employed for a range of objectives. The sequence specific amplified polymorphism (S-SAP) technique is a powerful genetic analysis tool which exploits the high copy number of retrotransposon long terminal repeats (LTRs) in the plant genome. The distribution and inheritance of S-SAP bands in the barley genome was studied using the Steptoe × Morex (S × M) double haploid (DH) population. Six S-SAP primer combinations generated 98 polymorphic bands, and map positions were assigned to all but one band. Eight putative co-dominant loci were detected, representing 16 of the mapped markers. Thus at least 81 of the mapped S-SAP loci were dominant. The markers were distributed along all of the seven chromosomes and a tendency to cluster was observed. The distribution of S-SAP markers over the barley genome concurred with the knowledge of the high copy number of retrotransposons in plants. This experiment has demonstrated the potential for the S-SAP technique to be applied in a range of analyses such as genetic fingerprinting, marker assisted breeding, biodiversity assessment and phylogenetic analyses.
Resumo:
To investigate the contribution of paternal alleles to the DNA content of olive oil, genetic analyses of olive DNA samples from fruits, leaves, and oil derived from the same tree (cv. Leccino) were carried out. DNA extracted from maternal tissues--leaves and flesh--from different fruits showed identical genetic profiles using a set of DNA markers. Additional simple sequence repeat (SSR) alleles, not found in the maternal samples, were amplified in the embryos (stone), and they were also detected in DNA extracted from the paste obtained by crushing whole fruits and from the oil pressed from this material. These results demonstrate that the DNA profile obtained from olive oil is likely to represent a composite profile of the maternal alleles juxtaposed with alleles contributed by various pollen donors. Therefore, care needs to be taken in the interpretation of DNA profiles obtained from DNA extracted from oil for resolving provenance and authenticity issues.
Resumo:
The following criteria were identified as essential elements in the evaluation of markers: (1) the marker has a causal biological link with the endpoint, (2) there is a significant association between marker and endpoint in the target population, (3) marker changes consistently with the endpoint, e.g., in response to an intervention, and (4) change in the marker explains a substantial proportion of the change in the endpoint in response to the intervention.
Resumo:
Background: There are compelling economic and environmental reasons to reduce our reliance on inorganic phosphate (Pi) fertilisers. Better management of Pi fertiliser applications is one option to improve the efficiency of Pi fertiliser use, whilst maintaining crop yields. Application rates of Pi fertilisers are traditionally determined from analyses of soil or plant tissues. Alternatively, diagnostic genes with altered expression under Pi limiting conditions that suggest a physiological requirement for Pi fertilisation, could be used to manage Pifertiliser applications, and might be more precise than indirect measurements of soil or tissue samples. Results: We grew potato (Solanum tuberosum L.) plants hydroponically, under glasshouse conditions, to control their nutrient status accurately. Samples of total leaf RNA taken periodically after Pi was removed from the nutrient solution were labelled and hybridised to potato oligonucleotide arrays. A total of 1,659 genes were significantly differentially expressed following Pi withdrawal. These included genes that encode proteins involved in lipid, protein, and carbohydrate metabolism, characteristic of Pi deficient leaves and included potential novel roles for genes encoding patatin like proteins in potatoes. The array data were analysed using a support vector machine algorithm to identify groups of genes that could predict the Pi status of the crop. These groups of diagnostic genes were tested using field grown potatoes that had either been fertilised or unfertilised. A group of 200 genes could correctly predict the Pi status of field grown potatoes. Conclusions: This paper provides a proof-of-concept demonstration for using microarrays and class prediction tools to predict the Pi status of a field grown potato crop. There is potential to develop this technology for other biotic and abiotic stresses in field grown crops. Ultimately, a better understanding of crop stresses may improve our management of the crop, improving the sustainability of agriculture.